Glucose-Sensing by Neurons: its Importance and the Role of UCP2 Glucose-sensing by the brain is a well documented phenomenon with potentially important implications for the pathogenesis of type 2 diabetes. Prior electrophysiological studies have determined that subpopulations of neurons are regulated by glucose. As glucose rises, """"""""glucose-excited"""""""" neurons depolarize and increase their firing rate. Examples of glucose-excited neurons include POMC neurons in the arcuate nucleus, MCH neurons in the lateral hypothalamus and a subgroup of neurons in the ventromedial hypothalamus (VMH). The molecular apparatus responsible for excitation by glucose is thought to have similarities to that found in pancreatic (3-cells. Specifically, neuronal oxidation of glucose and/or lactate (thelatter generated by glucose metabolism in glial cells), increases the ATP/ADP ratio. This then closes neuronal KATP channels, depolarizing the neuron which then increases its firing rate. While the phenomenon of """"""""P-cell-like"""""""" glucose- sensing in the brain is robust, its physiologic relevance and its contribution to disease states such as type 2 diabetes, is unknown. The overall goal of these studies is to assess the role of """"""""p-cell-like"""""""" glucose-sensing by neurons in normal physiology and in the development of type 2 diabetes. This will be accomplished through the use of genetically engineered mice. First, we will disrupt """"""""P-cell-like"""""""" glucose-sensing in a neuron-specific fashion, through transgenic expression of a mutant KATP channel, and then determine if this adversely affects insulin / glucose homeostasis (Aim 1). Second, we will determine if uncoupling protein-2 (UCP2) negatively regulates """"""""P-cell-like"""""""" glucose-sensing in neurons and whether this could be a cause of defective glucose-sensing in type 2 diabetes (Aim 2). Third, we will determine if absence of UCP2 in neurons, which we predict will prevent loss of glucose-sensing, improves obesity-induced impairments in insulin / glucose homeostasis (Aim 3). Studies proposed in this application could provide novel insight into the role of the brain in the pathogenesis of type 2 diabetes. Such insight could result in novel treatments for this disease.
Fenselau, Henning; Campbell, John N; Verstegen, Anne M J et al. (2017) A rapidly acting glutamatergic ARC?PVH satiety circuit postsynaptically regulated by ?-MSH. Nat Neurosci 20:42-51 |
Campbell, John N; Macosko, Evan Z; Fenselau, Henning et al. (2017) A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 20:484-496 |
Garfield, Alastair S; Shah, Bhavik P; Burgess, Christian R et al. (2016) Dynamic GABAergic afferent modulation of AgRP neurons. Nat Neurosci 19:1628-1635 |
Crowley, Nicole A; Bloodgood, Daniel W; Hardaway, J Andrew et al. (2016) Dynorphin Controls the Gain of an Amygdalar Anxiety Circuit. Cell Rep 14:2774-83 |
Krashes, Michael J; Lowell, Bradford B; Garfield, Alastair S (2016) Melanocortin-4 receptor-regulated energy homeostasis. Nat Neurosci 19:206-19 |
Vetrivelan, Ramalingam; Kong, Dong; Ferrari, Loris L et al. (2016) Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 336:102-113 |
Kong, Dong; Dagon, Yossi; Campbell, John N et al. (2016) A Postsynaptic AMPK?p21-Activated Kinase Pathway Drives Fasting-Induced Synaptic Plasticity in AgRP Neurons. Neuron 91:25-33 |
Al-Hasani, Ream; McCall, Jordan G; Shin, Gunchul et al. (2015) Distinct Subpopulations of Nucleus Accumbens Dynorphin Neurons Drive Aversion and Reward. Neuron 87:1063-77 |
Garfield, Alastair S; Li, Chia; Madara, Joseph C et al. (2015) A neural basis for melanocortin-4 receptor-regulated appetite. Nat Neurosci 18:863-71 |
Krashes, Michael J; Shah, Bhavik P; Madara, Joseph C et al. (2014) An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507:238-42 |
Showing the most recent 10 out of 22 publications