Studies conducted over the past nine years of the MERIT award established synaptic inputs to mesolimbic dopaminergic neurons in the ventral tegmental area (VTA) and their targets in the nucleus accumbens (NAc) that are critical for psychostimulant and antipsychotic drug actions. Most importantly, the results show that these neurons receive monosynaptic input from terminals containing neurotensin or serotonin (5-HT) and from excitatory prefrontal cortical afferents. Synaptic transmission depends, however, on vesicular packaging and plasmalemmal reuptake of monoamines and on the activation of functionally relevant receptors, whose subcellular distributions are largely unknown. To determine these sites, three studies are proposed using quantitative electron microscopic immunocytochemistry for the localization of sequence-specific antipeptide antisera against recently cloned transporters and receptors. These will be examined in brain tissue from normal adult rats and from animals receiving chronic treatment with haloperidol, a typical antipsychotic drug that blocks dopamine D2 receptors. Study I will test the hypotheses that (1) the levels of the vesicular monoamine transporter (VMAT2) and dopamine transporter (DAT) differ in dendrites of mesolimbic and mesocortical dopaminergic neurons, suggesting differences in their capacity for dendritic dopaminergic transmission. The potential functional sites for neurotensin and dopamine D3 receptor activation also will be examined in relation to neurons that contain dopamine, D2 receptors or gamma-aminobutyric acid (GABA), the neurotransmitter present in non-dopaminergic neurons in the VTA and in most targets of dopaminergic terminals in the NAc. Study II will test the hypothesis that 5-HT2A receptors, which are major binding sites for certain atypical antipsychotic drugs, are present in dendrites of dopaminergic neurons in the VTA and/or GABAergic neurons in NAc. The localization of the serotonin transporter (SERT) will be examined in the limbic shell and motor core of the NAc to determine whether there are regional variations that may affect local availability of extracellular serotonin. Study III will determine whether dopamine D2 and/or D3 receptors are present in axon terminals derived from the prefrontal cortex or their postsynaptic targets in the NAc. This study will also test the hypotheses that (1) N-methyl-D-aspartate (NMDA) glutamate receptors and D2 receptors are present in the same dendritic spines, and (2) chronic treatment with haloperidol produces selective changes in NMDA containing spines of GABAergic neurons in the motor striatum. Together, the results will contribute to our understanding of the pathophysiology and treatment of hyperkinetic movement disorders and schizophrenia.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37MH040342-15
Application #
2890334
Study Section
Neuropharmacology and Neurochemistry Review Committee (NPNC)
Program Officer
Winsky, Lois M
Project Start
1985-09-01
Project End
2003-05-31
Budget Start
1999-06-01
Budget End
2000-05-31
Support Year
15
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Weill Medical College of Cornell University
Department
Neurology
Type
Schools of Medicine
DUNS #
201373169
City
New York
State
NY
Country
United States
Zip Code
10065
Glass, Michael J; Chan, June; Pickel, Virginia M (2017) Ultrastructural characterization of tumor necrosis factor alpha receptor type 1 distribution in the hypothalamic paraventricular nucleus of the mouse. Neuroscience 352:262-272
Gasser, Paul J; Hurley, Matthew M; Chan, June et al. (2017) Organic cation transporter 3 (OCT3) is localized to intracellular and surface membranes in select glial and neuronal cells within the basolateral amygdaloid complex of both rats and mice. Brain Struct Funct 222:1913-1928
Garzón, Miguel; Pickel, Virginia M (2016) Electron microscopic localization of M2-muscarinic receptors in cholinergic and noncholinergic neurons of the laterodorsal tegmental and pedunculopontine nuclei of the rat mesopontine tegmentum. J Comp Neurol 524:3084-103
Glass, Michael J; Wang, Gang; Coleman, Christal G et al. (2015) NMDA Receptor Plasticity in the Hypothalamic Paraventricular Nucleus Contributes to the Elevated Blood Pressure Produced by Angiotensin II. J Neurosci 35:9558-67
Gan, J O; Bowline, E; Lourenco, F S et al. (2014) Adolescent social isolation enhances the plasmalemmal density of NMDA NR1 subunits in dendritic spines of principal neurons in the basolateral amygdala of adult mice. Neuroscience 258:174-83
Garzón, Miguel; Pickel, Virginia M (2013) Somatodendritic targeting of M5 muscarinic receptor in the rat ventral tegmental area: implications for mesolimbic dopamine transmission. J Comp Neurol 521:2927-46
Garzón, M; Duffy, A M; Chan, J et al. (2013) Dopamine D? and acetylcholine ?7 nicotinic receptors have subcellular distributions favoring mediation of convergent signaling in the mouse ventral tegmental area. Neuroscience 252:126-43
Glass, Michael J; Robinson, Danielle C; Waters, Elizabeth et al. (2013) Deletion of the NMDA-NR1 receptor subunit gene in the mouse nucleus accumbens attenuates apomorphine-induced dopamine D1 receptor trafficking and acoustic startle behavior. Synapse 67:265-79
Fitzgerald, M L; Mackie, K; Pickel, V M (2013) The impact of adolescent social isolation on dopamine D2 and cannabinoid CB1 receptors in the adult rat prefrontal cortex. Neuroscience 235:40-50
Fitzgerald, Megan L; Shobin, Eli; Pickel, Virginia M (2012) Cannabinoid modulation of the dopaminergic circuitry: implications for limbic and striatal output. Prog Neuropsychopharmacol Biol Psychiatry 38:21-9

Showing the most recent 10 out of 128 publications