Genome editing technologies, such CRISPR/Cas9 provide a rapid, and targeted means of both knocking out gene expression and knocking in gene modifications. However, the current workflow required for CRISPR cell line generation relies on several technologies which reduce throughput, efficiency and the overall viability of genome edited cells. Cell Microsystems has developed a single cell isolation and recovery platform ideally suited to high-throughput production of CRISPR cell lines. The core technology comprises a disposable microwell array (the CellRaft? Array) on which cells are seeded and imaged. To isolate single cells, a motorized needle penetrates the resealable elastomeric underside of the Array to displace the individual CellRaft from its microwell. The CellRaft material is loaded with magnetic nanoparticles, allowing retrieval of the CellRaft, and attached cell, using a magnetic wand. By enabling on-array transfection and recovery, the system replaces harmful trypsinization, re-plating/recovery steps and stressful sheer forces used in fluorescence-assisted cell sorting (FACS), resulting in a method amenable to rapid high-throughput CRISPR cell line generation. During Phase I we plan to build on work by one of our Early Adopter Program participants and Principal Investigator of this program, William Marzluff, Ph.D. of the University of North Carolina at Chapel Hill. Using the CellRaft Array, Dr. Marzluff?s team has streamlined the transfection and cloning workflow for producing CRISPR cell lines. Thus far, his team has: 1) developed a clonal colony isolation protocol using the CellRaft System; 2) shown comparable viability of clonal colonies isolated on the CellRaft system compared to FACS and 3) established a protocol for transfecting cells pre-seeded on the CellRaft Array, eliminating re-plating and recovery steps required for FACS. Here we will expand on this work by 1) optimizing transfection and sorting on the array for CRISPR/Cas9 genome editing and 2) developing a 24-well CellRaft Array allowing a dramatic increase in sorting throughput over other clonal isolation technologies including FACS. Pending successful development of these methods in Phase I, our Phase II program will focus on implementing the workflow on our under development automated instrument, the Automated Isolation and Retrieval, or AIR? System. Automating the workflow will allow higher throughput isolation of clonal colonies from multiple transfection reactions (384 total clones in 2 hours), as well as semi-quantitative sorting of cells using fluorescent marker intensities. Also during Phase II we will carry out a CRIPSR/Cas9 screen using hundreds of sgRNAs on the AIR? System. CRISPR/Cas9 screening is likely to be one of the primary market drivers of this technology, and using the powerful imaging capabilities of the AIR? System will allow screening for more sophisticated phenotypes than merely cell death.

Public Health Relevance

The ability to rapidly edit the genome using the CRISPR/Cas9 technology has dramatically accelerated investigators? ability to manipulate the expression of genes in a broad range of cell types. While CRISPR- mediated genome editing is flexible and straightforward, the workflow relies on several technologies which limit its throughput and efficiency. Cell Microsystems has developed the CellRaft Array, a single cell imaging and isolation platform which allows analysis of transfection efficiency, non-destructive retrieval of single cells and a flexible cell culture environment amenable to growing clonal colonies from virtually any cell type. As a replacement to fluorescence assisted cell sorting (FACS) the CellRaft System has several advantages including allowing on-array transfection and recovery, eliminating re-suspension and re-plating steps and reducing environmental stress during clonal colony formation and isolation all leading to a more rapid and efficient workflow.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Small Business Technology Transfer (STTR) Grants - Phase I (R41)
Project #
1R41HG009467-01A1
Application #
9345088
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Smith, Michael
Project Start
2017-05-01
Project End
2019-04-30
Budget Start
2017-05-01
Budget End
2019-04-30
Support Year
1
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Cell Microsystems, Inc.
Department
Type
DUNS #
962655853
City
Durham
State
NC
Country
United States
Zip Code
27709