Tendon injuries are quite common and the frequency of these injuries is expected to rise as the population ages, yet continues to remain active. Long periods of immobilization and rehabilitation are required because tendon healing is a relatively slow process. Innovations that can shorten this time period by improving healing rates and increasing the strength of repair tissue will be of great value for patients and society. Earlier activity is believed to promote better return of function, accelerated healing, and improved quality of tendon repair tissue. However, this early motion and activity cannot be at the cost of increasing gapping of the two tendon ends or even frank re-rupture. Attempts have been made with ultrasound, mechanical stimulation, and growth factors to increase healing rates to provide enough mechanical strength to allow patients to start activity that will put load on the healing tendons, while still protecting the integrity of the initial suture repair. The goal of this Phase I SBIR proposal is to validate an IFBM approach to bind bioactive molecules such as growth factors to non-absorbable polyester suture (Ethibond, Ethicon, Inc.), which is commonly used in many types of tendon repair. We present a novel approach to create target-specific modular peptides that bind bioactive agents (growth factors, cells, etc.) to synthetic biocompatible surfaces (matrix polymer, metal, etc.). These specifying and grafting biopolymers are termed """"""""interfacial biomaterials"""""""" (IFBMs). A bi-functional IFBM has the unique advantages of a) providing requisite surface binding specificity, b) comprising robust chemistry for broad-based applications and c) offering capacity to specify a wide range of associated or independent biological activities onto a single scaffold or surface. Cartilage derived morphogenetic proteins (CDMP) -1, -2 and -3 (also known as BMP -14, -13, and -12) have recently been shown to be involved in tendon development and healing. We believe that binding growth factors such as those of the CDMP family to suture with IFBM technology could significantly improve the clinical outcomes after surgical repair of tendons by increasing healing rates and by improving the quality of the repair tissue. ? ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43AR053753-01
Application #
7106723
Study Section
Special Emphasis Panel (ZRG1-MOSS-H (10))
Program Officer
Tyree, Bernadette
Project Start
2006-06-28
Project End
2008-03-31
Budget Start
2006-06-28
Budget End
2008-03-31
Support Year
1
Fiscal Year
2006
Total Cost
$202,997
Indirect Cost
Name
Affinergy,Inc
Department
Type
DUNS #
078296854
City
Research Triangle Park
State
NC
Country
United States
Zip Code
27709