TheraCell Inc. proposes to develop a new device for the rapid isolation and electroporation of individual mesenchymal adult stem cells (MSCs), as part of its CellLabTM stem cell product suite, for application in spine fusion and other stem cell-based skeletal regeneration therapies. This stem cell processing device will consist of three critical modules, of which the electroporation module is one, and which is the motivation for this proposal. (The other two critical modules, also employing single cell manipulation techniques, are being developed by TheraCell under separate projects). Adult MSCs are pluripotent cells that can differentiate along osteogenic, adipogenic, myogenic, and other pathways, and represent a promising tool for cell and cell-based tissue engineering. We propose to develop the technology to select the individual MSCs, and then to perform single-cell gene-transfection (via electroporation) for up to ~107 individual MSCs in a very short period of time. The new single-cell electroporation method will result in a significantly more efficient and effective gene-transfection method compared with the bulk electroporation methods currently in use. In Phase I, we will design and fabricate a prototype microfluidic micro-electroporation chip, based on new MEMS (micro-electro-mechanical systems) technology. The chip will contain several test structures, including single-channel versions of the design, as well as a multi-channel version. The design will be developed in such as way as to lend itself easily for scale up to hundreds of channels required for the final product. The prototype micro-electroporation chips will be evaluated for basic fluid flow characteristics using fluorescently labeled microspheres, and then with stem cells that will be electroporated with a fluorescence protein for analysis using a fluorescence microscope. Once the optimum electroporation parameters are determined, the chip will be further evaluated with stem cells that have been electroporated with the BMP-2 protein, and those cells will be analyzed for osteogenic potential. In Phase II we will further optimize the design of the micro-electroporation chip, based on the Phase I results. The number of channels will be scaled up from a few to tens or hundreds of channels, to accommodate the large numbers of cells required for the targeted application. We will build a complete pre-production prototype single-cell micro-electroporation device. At the end of Phase II, we plan to demonstrate a completed prototype that can be rapidly commercialized as a stand-alone product for research applications, and also integrated into a complete stem cell processing device, which includes the other cell manipulation modules, for future clinical applications.

Public Health Relevance

We propose to develop a new device for the electroporation and efficient gene-transfection of individual mesenchymal adult stem cells (MSCs) for application in spine fusion and other skeletal regeneration therapies. Adult MSCs are pluripotent cells that represent a promising tool for cell and cell-based tissue engineering. The new single-cell electroporation method will result in a significantly more efficient and effective gene-transfection method compared with the bulk electroporation methods currently in use, for improved stem cell therapy outcomes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43AR057587-01
Application #
7743966
Study Section
Special Emphasis Panel (ZRG1-BST-G (10))
Program Officer
Wang, Fei
Project Start
2009-08-25
Project End
2010-05-31
Budget Start
2009-08-25
Budget End
2010-05-31
Support Year
1
Fiscal Year
2009
Total Cost
$182,238
Indirect Cost
Name
Theracell, Inc.
Department
Type
DUNS #
827675112
City
Northridge
State
CA
Country
United States
Zip Code
91324
Sheyn, Dima; Mizrahi, Olga; Benjamin, Shimon et al. (2010) Genetically modified cells in regenerative medicine and tissue engineering. Adv Drug Deliv Rev 62:683-98