Industrial processes produce difficult to treat wastewater containing environmental contaminants in the form of dissolved metals, many of which pose a potential health hazard to plants, animals, and humans. Examples include mining industry effluents, wastewater treatment effluents and landfill leachates. In many cases, these waste streams cannot be treated cost effectively. Consequently, massive quantities of wastewater are quarantined for expensive treatment and subsequent discharge, disposed of underground, or discharged into our surface water supply leading to a significant impact on environmental and human health. Remediation of these waste streams is traditionally accomplished through a variety of technologies ranging from chemical precipitation to membrane filtration. The technology used is highly dependent on the effluent type, and each technology has intrinsic advantages and drawbacks. While chemical precipitation is simple and capital investments are inexpensive, it is inefficient process at low metal concentrations, non-selective, and generates large amounts of sludge which requires subsequent treatment. On the other hand, membrane filtration technologies have high metal removal efficiencies and generate minimal waste, but they are extremely expensive to operate, have high operational complexity, and suffer from membrane fouling. This Phase I SBIR will combine a proprietary process to manufacture green bioinspired metal-selective sugar-based surfactants with ion flotation technology for efficient and cost-effective removal of toxic metals and rare earth elements (REE) from wastewater solutions. This new technology will create a saleable product of metals of strategic importance to the US and facilitate water reuse through removal of toxic metals from waste streams. Preliminary data using simple solutions, has demonstrated that biosynthetic rhamnolipids are highly effective at capturing both rare earths and heavy metals, even in the presence of common soil cations such as sodium, potassium, and calcium. During the Phase I effort, GlycoSurf and its University of Arizona partner, will work on 3 specific Aims: 1) model and real-world effluent characterization, 2) characterize metal removal from model and real-world solutions via ion flotation, and 3) evaluation of performance and scale-up cost estimation. Successful completion of the specific aims will facilitate the pathway to commercialization of the novel technology to protect water supplies (and ultimately human and environmental health), while simultaneously creating a novel pathway for the production of saleable REE.

Public Health Relevance

Metal contamination of the environment is a serious and widespread problem that poses serious risks to environmental and human health. GlycoSurf and the University of Arizona propose a novel technology using green environmentally friendly rhamnolipid surfactants in combination with ion flotation for recovery of toxic and precious metals, including rare earth elements from wastewater. Successful application of this technology will allow safe reuse of contaminated water and provide a source of rare earth elements that are in short supply but critically needed for technology development

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43ES029423-01
Application #
9559076
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Henry, Heather F
Project Start
2018-04-01
Project End
2019-03-31
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
1
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Glycosurf, LLC
Department
Type
DUNS #
079763857
City
Park City
State
UT
Country
United States
Zip Code
84060