Platelet transfusion is critical for severely bleeding patients and nearly 7 million units are transfused in the United States and Europe annually. In the United States, platelets can only be stored for 5 days resulting in a waste of 15% of their supply. Short storage duration is a consequence of bacterial contamination and platelet quality considerations. Though many methods have been developed for bacterial testing and pathogen inactivation, fewer have been developed for improving quality of stored platelets. Platelet additive solutions have the possibility to increase storage quality and duration, reduce plasma-related allergic reactions, impact the efficacy of pathogen reduction techniques, and save plasma which can then be used as an additional transfusion product. While the benefits are well known, there has been little progress in developing new platelet additive solutions for increasing quality and safety of platelet transfusion because there is a lack of broad understanding of biochemical decline during storage. There has been interest to utilize high-throughput metabolite and protein profiling for global understanding of platelet metabolic decline but data analysis of complex datasets has been a daunting challenge. The proposed program will develop the first, robust computational platform involving statistical analysis, systems biology of metabolic and signaling networks, and data-driven kinetic models to fully interpret and analyze platelet metabolite and protein profiles in a complete network context. The program will utilize recently generated time-course global, quantitative metabolite profiling to track intracellular and extracellular platelet metabolites under standard storage conditions and available proteomic studies in literature. The deep biochemical understanding obtained will be employed to quantitatively predict optimal additive solutions based on biological efficacy, cost, and regulator hurdles. Predicted additives will be chosen for experimental validation and testing in Phase II.

Public Health Relevance

Platelet transfusion units can only be stored for five days in the United States leading to a waste of 15% of units and potential quality concerns. The field is open for innovation as most technologies are derived from work from the early 1990s. As part of this proposal, novel computational methods will be developed and applied to comprehensively understand the degradation of platelets under storage conditions to predict new additive solutions for increasing platelet transfusion quality and extending shelf life, an area that accounts for 0.2% of all hospital costs.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43HL127843-01A1
Application #
8977072
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Mitchell, Phyllis
Project Start
2015-08-01
Project End
2017-07-31
Budget Start
2015-08-01
Budget End
2017-07-31
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Sinopia Biosciences, Inc.
Department
Type
DUNS #
078634229
City
San Diego
State
CA
Country
United States
Zip Code
92101
Bordbar, Aarash (2017) Interpreting the deluge of omics data: new approaches offer new possibilities. Blood Transfus 15:189-190
Bordbar, Aarash; Yurkovich, James T; Paglia, Giuseppe et al. (2017) Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci Rep 7:46249