Multiplexed point-of-care diagnostics for many synergistic diseases presents a fundamental challenge: a state-of-the-art diagnostic assay will require both protein and nucleic acid detection in a single platform. In addition to this requirement, it is critical that the diagnstic platform is rapid, inexpensive, and highly robust with respect to harsh field conditions and low-resource settings. An example of need for a multiplexed test is for tuberculosis (TB) and human immunodeficiency virus (HIV), major global priority diseases that combined kill about 5 million people per year. The diseases have a synergistic interaction, wherein each disease accentuates the progression of the other and often results in delayed diagnosis. Widely used lateral flow assays generally cannot achieve reliable multiplexed diagnostics, due to the differential binding of molecules of interest to the membrane material(s). Microfluidics offers the potential to solve this problem and allow highly- multiplexed analysis while meeting the cost, speed, and robustness requirements. However, powering the flow in portable, low cost and robust microfluidic devices represents a major challenge in the success of such platforms. DiAssess'proprietary Self-powered Integrated Microfluidic Blood Analysis System (SIMBAS) is an integrated sample-to- answer (whole blood to visual readout) disposable diagnostic device. SIMBAS integrates sample preparation, multiplexed assays, amplification, and readout into a rapid, inexpensive, and robust system for the simultaneous detection of TB and HIV. A critical component of the SIMBAS system that distinguishes it from other microfluidic platforms is its self-powered degas-driven flow. This flow system allows the device to operate under a robust range of conditions without any external tubing, power supply, or complex set of device materials. In Phase I, DiAssess wil demonstrate the prof-of-concept integrated detection of both nucleic acid and protein biomarkers, using techniques and materials compatible with low-cost/high-volume mass manufacturing. This includes microfluidic device fabrication, reagent patterning, and demonstration of a single-step, self-contained blood analysis system with combined RNA and protein diagnostic detection for HIV and latent TB. Together, these aims will demonstrate the feasibility of the SIMBAS platform. In Phase II, DiAssess wil characterize and optimize the SIMBAS selectivity and sensitivity with clinical samples, robustness under harsh environmental conditions, and develop manufacturing processes leading to a marketable device. While working directly on the UC Berkeley campus, DiAssess is surrounded by the top minds in both micro fabrication and bioengineering. All equipment required is readily available directly on the campus at low cost. In addition, our strong ties with the Luke Lee lab and the California Institute for Quantitative Biosciences (QB3) ensure a vibrant intellectual atmosphere and access to an extended network of resources.

Public Health Relevance

Project Narrative DiAssess will develop and deliver a Self-powered Integrated Microfluidic Blood Analysis System (SIMBAS) that will enable multiplexed point-of-care detection for both nucleic acid and protein biomarkers. Proof-of-concept detection of tuberculosis (TB) and human immunodeficiency virus (HIV) will be demonstrated.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43OD016718-01A1
Application #
8394537
Study Section
Special Emphasis Panel (ZRG1-IMST-M (13))
Program Officer
Contreras, Miguel A
Project Start
2012-09-17
Project End
2014-09-16
Budget Start
2012-09-17
Budget End
2014-09-16
Support Year
1
Fiscal Year
2012
Total Cost
$148,880
Indirect Cost
Name
Diassess
Department
Type
DUNS #
962428368
City
Berkeley
State
CA
Country
United States
Zip Code
94709