As rates of adolescent depression and suicidality continue to trend upwards, the healthcare system struggles to address the need for and lack of mental health service use. The pediatric patient-centered medical home model may improve adolescent depression outcomes by enhancing access to and coordinating care, as well as providing ongoing monitoring. Unfortunately, despite guideline recommendations, over 2/3 of adolescents identified with depression symptoms in primary care do not receive symptom monitoring and 19% do not re- ceive symptom reassessment. This lack of symptom monitoring and reassessment can result in untoward health outcomes including a decrease in functioning, increased use of acute and crisis services, and hospitali- zations due to suicidality. Current technologies which incorporate data passively collected from smartphones offer an opportunity for intercurrent monitoring between patient visits which limits burden on the patient to self- report and limits burden on the healthcare system, allowing primary care teams to triage contacting and as- sessing patients a system identifies with an increase in disease severity. This formative study will demonstrate the usability and potential clinical utility of MoodRing, a technology intervention which will collect passive mo- bile phone sensor data on aspects of adolescent phone use related to depressive symptom severity (e.g. com- munication patterns, social media use, travel) and integrate this data into a multi-user (adolescent, parent, pri- mary care provider/care manager) platform from which symptoms can be viewed and secure communication can occur. MoodRing, as supported by Health Belief Model, may lead to improved quality of depression man- agement (increased symptom reassessment, therapy/medication adherence) through increasing self-efficacy, social support from parent and care team, as well as encouraging application of self-management skills through increased self-management knowledge, skills, and symptom feedback. MoodRing builds on a solid foundation of investigators experienced in design of technology interventions to increase adolescent initiation of depression treatment, who have already developed machine algorithms for passive sensing and a small business partner with vast experience in working with health researchers to develop multi-user web/mobile platforms. This STTR Phase I study seeks to accomplish two aims. The first is to apply a machine learning pipeline developed for college-aged youth to adolescents with depression and determine whether self-reported depressive symptoms can be reliably predicted from passive data with at least 85% accuracy. The second is the user design and system architecture of MoodRing. If milestones are achieved that models are successful at predicting depressive symptoms and the proposed MoodRing intervention is acceptable to adolescents, par- ents, and primary care providers/care managers, then we will pursue the STTR Phase II study.
The aims of Phase II include the development and subsequent efficacy trial of MoodRing. Specifically, we will conduct a cluster randomized controlled trial in a primary care setting of MoodRing as compared to usual care.

Public Health Relevance

Depression affects up to a fifth of adolescents but less than half get treatment. This project aims to develop and design MoodRing, a technology platform, which will gather information about how an adolescent uses their mobile phone and translate that into what it means about symptoms of depression they are experiencing. This platform will provide symptom feedback to the adolescent themselves, their parent, and their healthcare pro- vider, with the goal that having awareness of symptoms and a safe place to communicate with parents and healthcare providers will allow for more adolescents to better self-manage their mood and get better quality treatment for depression.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Haim, Adam
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Nurelm E-Business Software
United States
Zip Code