Mycobacterium tuberculosis (Mtb) has adapted to survive a wide range of assaults-from our immune response to antimicrobial therapeutics-intended to eradicate the organism. However, the molecular switches that enable Mtb to endure these stresses, to slow replication or to become dormant as a latent tuberculosis infection (LTBI) are not known. Emerging studies on the molecular underpinnings of stress survival in Escherichia coli generally point to a major role for toxin-antitoxin (TA) systems, which are operons comprising adjacent genes encoding two small proteins, a toxin and its cognate antitoxin that inhibits toxin activity in the TA protein-protein complex. Their expression has been implicated in Mtb stress survival and/or the switch to the non-replicating persistent state characteristic of LTBI. However, several bottlenecks have impeded progress toward rigorous testing of this provocative association. This proposal enlists a strong team to develop and apply a new technology, 5' RNA-seq, to overcome these obstacles as they apply to the nine member MazE (antitoxin) - MazF (toxin) family in Mtb. Our goal is to apply 5' RNA-seq technology toward comprehensive detection of MazF-mt targets in the Mtb transcriptome. We will then apply it to Mtb cultures grown under unstressed conditions or after exposure to stresses that are relevant to TB latency. Finally, we will also study how cleavage of rRNAs by Mtb MazF toxins modifies ribosome function. These approaches should lead to an accurate snapshot of RNAs targeted by MazF toxins under these metabolic states, reveal how RNA cleavage alters translation and identify the environmental signals that trigger toxin activation in Mtb.

Public Health Relevance

This proposal investigates how the bacterium that causes tuberculosis in humans, Mycobacterium tuberculosis, has the unique ability to evade being killed by our immune system and is able persist for long periods of time in its host as a latent infection Latent infections can be reactivated-especially in the immune compromised-to the highly contagious, active form of TB and accelerate spread of the disease. Therefore, it is important to understand how latent tuberculosis develops and how it becomes reactivated because globally the number of deaths caused by M. tuberculosis is second only to those caused by the HIV/AIDS virus.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
High Priority, Short Term Project Award (R56)
Project #
1R56AI119055-01
Application #
9127594
Study Section
Bacterial Pathogenesis Study Section (BACP)
Program Officer
Kraigsley, Alison
Project Start
2015-09-01
Project End
2016-08-31
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
1
Fiscal Year
2015
Total Cost
$548,706
Indirect Cost
$127,875
Name
Rbhs-Robert Wood Johnson Medical School
Department
Biochemistry
Type
Schools of Medicine
DUNS #
078795875
City
Piscataway
State
NJ
Country
United States
Zip Code
08854
Schifano, Jason M; Woychik, Nancy A (2017) Cloaked dagger: tRNA slicing by an unlikely culprit. RNA Biol 14:15-19
Schifano, Jason M; Cruz, Jonathan W; Vvedenskaya, Irina O et al. (2016) tRNA is a new target for cleavage by a MazF toxin. Nucleic Acids Res 44:1256-70