Cystic fibrosis, a disease of altered water and salt secretion across epithelial tissues, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is a member of the ABC-transporter family of proteins and functions as a chloride channel;loss of the functional chloride channel activity is causative of CF. The ATP-Binding Cassette (ABC-) transporter superfamily of proteins is highly conserved across prokaryotes and eukaryotes, facilitating solute transport across biological membranes. ABC-transporter proteins are minimally composed of a dimer of highly conserved, cytosolic nucleotide-binding domains (NBDs), which provides the energy for solute transport through a dimer of transmembrane domains (TMDs). ATP binding and hydrolysis within the NBDs is regulated by the canonical Walker A and B nucleotide-binding sequences, as well as a sequence unique to the ABC-transporter family of proteins ? the signature sequence, or LSGGQRxR. While the Walker A and B sequences are well characterized, the structural and functional properties of the LSGGQRxR sequence are not known. Preliminary data suggest that the LSGGQRxR sequence critically contributes to the biosynthesis and function of CFTR and other ABC-transporter proteins. Functional regulation of NBD-NBD association events is critically altered by substitution of the glycine residues, resulting in either hyperactive or inactive channels. Alterations to the RxR sequence alter channel biosynthesis with only minor effects on channel activity. The major goal of this project is to elucidate the structural and functional roles of the LSGGQRxR sequence in regulating CFTR-channel and ABC-transporter biosynthesis and function. To accomplish this, we have developed methods for the expression, purification and biophysical characterization of the isolated NBD proteins from CFTR and two homologues (human ABCC6 and the bacterial Mj0796). Using a combination of X-ray crystallographic, nucleotide binding and hydrolysis, and biochemical approaches, we will evaluate the specific structural and functional roles of the LSGGQRxR signature sequence. These in vitro data will complement experiments evaluating the biosynthesis and function of full-length protein to provide a detailed model for the regulation of ABC-transporter biogenesis and mechanochemistry by the signature sequence.
The specific aims of this application are: (1) Characterize the nucleotide-binding and hydrolysis properties of CFTR NBD1 and NBD2, (2) Elucidate the role of the signature sequence di-glycine residues in ATP-mediated NBD association and function, and (3) Characterize the role of the RxR sequence on local NBD structure and CFTR biosynthesis. The research proposed in this application will provide novel insight into the previously undefined structural and functional roles of this highly conserved LSGGQRxR sequence. The innovative use of in vitro biochemical, structural and enzymatic assays to complement studies of full-length protein biosynthesis and function will refine models of the biogenesis and mechanochemistry of these medically important proteins.

Public Health Relevance

ABC transporters play a key role in human disease by contributing to disease pathophysiology when mutated and by contributing to virulence of opportunistic pathogens. Understanding the biosynthetic and functional regulation of these proteins will contribute to our understanding of how these proteins directly and indirectly impact human disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
High Priority, Short Term Project Award (R56)
Project #
1R56DK083284-01A1
Application #
8038519
Study Section
Lung Cellular, Molecular, and Immunobiology Study Section (LCMI)
Program Officer
Mckeon, Catherine T
Project Start
2010-05-01
Project End
2011-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
1
Fiscal Year
2010
Total Cost
$227,250
Indirect Cost
Name
University of Pittsburgh
Department
Physiology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Garcia, Carlos J; Pericleous, Androulla; Elsayed, Mennat et al. (2018) Serralysin family metalloproteases protects Serratia marcescens from predation by the predatory bacteria Micavibrio aeruginosavorus. Sci Rep 8:14025
Ran, Yanchao; Zheng, Aiping; Thibodeau, Patrick H (2018) Structural analysis reveals pathomechanisms associated with pseudoxanthoma elasticum-causing mutations in the ABCC6 transporter. J Biol Chem 293:15855-15866
Ran, Yanchao; Thibodeau, Patrick H (2017) Stabilization of Nucleotide Binding Domain Dimers Rescues ABCC6 Mutants Associated with Pseudoxanthoma Elasticum. J Biol Chem 292:1559-1572
Stella, Nicholas A; Callaghan, Jake D; Zhang, Liang et al. (2017) SlpE is a calcium-dependent cytotoxic metalloprotease associated with clinical isolates of Serratia marcescens. Res Microbiol 168:567-574
Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M et al. (2015) Identification of SlpB, a Cytotoxic Protease from Serratia marcescens. Infect Immun 83:2907-16
Needham, Patrick G; Patel, Hardik J; Chiosis, Gabriela et al. (2015) Mutations in the Yeast Hsp70, Ssa1, at P417 Alter ATP Cycling, Interdomain Coupling, and Specific Chaperone Functions. J Mol Biol 427:2948-65
Zhang, Liang; Morrison, Anneliese J; Thibodeau, Patrick H (2015) Interdomain Contacts and the Stability of Serralysin Protease from Serratia marcescens. PLoS One 10:e0138419
Xue, Peng; Crum, Chelsea M; Thibodeau, Patrick H (2014) Regulation of ABCC6 trafficking and stability by a conserved C-terminal PDZ-like sequence. PLoS One 9:e97360
Butterworth, Michael B; Zhang, Liang; Liu, Xiaoning et al. (2014) Modulation of the epithelial sodium channel (ENaC) by bacterial metalloproteases and protease inhibitors. PLoS One 9:e100313
Zhang, Liang; Franks, Jonathon; Stolz, Donna B et al. (2014) Inducible polymerization and two-dimensional assembly of the repeats-in-toxin (RTX) domain from the Pseudomonas aeruginosa alkaline protease. Biochemistry 53:6452-62

Showing the most recent 10 out of 14 publications