Coronary artery disease (CAD) is a leading cause of death among adults in the United States. Its prevalence is highest in individuals of African ancestry. It has been estimated that genetic factors account for 26% to 69% of interindividual variation in CAD risk. Large-scale genome-wide association studies (GWAS) of CAD have mainly been conducted in populations of European ancestry and identified 161 independent loci so far. Few of the loci identified in European-ancestry populations have been replicated in populations of African ancestry. Large-scale GWAS of CAD in African-ancestry populations are lacking. This proposal will efficiently leverage the existing resources of the Population Architecture using Genomics and Epidemiology Consortium, Million Veteran Program and other established cohorts to create the largest-ever sample size for a genetic study of African- ancestry populations comprehensively phenotyped for CAD and related cardiometabolic traits. We propose to address the following Specific Aims.
Aim 1 will interrogate the genome using admixture mapping, univariate GWAS, multi-variate GWAS and trans-ethnic GWAS approaches to identify loci associated with CAD in African- ancestry populations.
Aim 2 will use phenome-wide association studies, variant-trait hierarchical clustering and integrative genomics methods to characterize CAD loci and gain insights into phenotypic, physiologic, and mechanistic impacts that underlie the pathophysiology of CAD.
Aim 3 will explore the public health impact and clinical relevance of CAD risk variants by constructing polygenic CAD risk scores and identifying pathogenic variants in Mendelian syndromes of CAD genes that are relevant to African-ancestry populations. The construction of population-specific polygenic risk scores and identification of rare and low-frequency pathogenic variants of large effect in Mendelian syndromes of CAD genes will facilitate quantification of CAD risk in individuals of African ancestry and potentially narrow the translational gap towards clinical use of genetic information across diverse populations. The comprehensive cross-trait associations of identified CAD risk loci will facilitate the discovery of subtypes of CAD. Both improved genetic CAD risk classifications and refined CAD sub-phenotyping would help with the implementation of precision medicine in CAD. The new biological insights elucidated from novel loci identified in African-ancestry populations may also be generalized to other populations for the diagnosis, prevention, and treatment of CAD.

Public Health Relevance

This study aims to identify and characterize genetic loci underlying coronary artery disease in populations of African ancestry. We will efficiently leverage the existing resources of the Population Architecture using Genomics and Epidemiology Consortium, Million Veteran Program and other established cohorts to create the largest-ever sample size for a study of an African-ancestry population comprehensively phenotyped for CAD and related cardiometabolic traits. The outcome of this study will provide a better understanding of the genetics of CAD and its risk factors in this high-risk population and has a strong likelihood of leading to measures that can help with the control and prevention of CAD in populations of African ancestry.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
High Priority, Short Term Project Award (R56)
Project #
1R56HL150186-01A1
Application #
10241644
Study Section
Genetics of Health and Disease Study Section (GHD)
Program Officer
Papanicolaou, George
Project Start
2020-09-17
Project End
2021-08-31
Budget Start
2020-09-17
Budget End
2021-08-31
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
079917897
City
Nashville
State
TN
Country
United States
Zip Code
37232