Long-term cognitive impairment affects more than 70% of sepsis survivors, but the underlying mechanisms remain unknown. Though widely hypothesized, evidence of blood-brain barrier (BBB) dysfunction in septic patients is limited by practical barriers to diagnostic studies in critically ill subjects. While BBB breakdown and cognitive impairment are seen in animal models of sepsis, the complexity of sepsis in vivo and differences between animal and human responses means that animal models cannot unambiguously identify the circulating factors that cause brain injury in human sepsis. Therefore, we propose to develop the SiM-hNVU as an `on-chip' platform featuring a human iPSC-derived neurovascular unit (NVU; brain microvascular endothelial cells, pericytes and astrocytes). The `blood side' will allow the flow-based introduction of blood- borne cells and molecules with known or hypothesized roles in sepsis related brain injury, and the `brain side' will feature iPSC-derived microglial cells serving as a reporter of the brain inflammatory status. The human NVU will be built on a device platform ? the SiM ? featuring ultrathin silicon nanomembranes that provide for unhindered solute exchange between `blood' and `brain' compartments and glass-like optical quality for live cell imaging and high-resolution microscopy. In the R61 phase, the device platform will be advanced for ease-of- use including `plug-and-play' modules for flow and barrier measurements (TEER, diffusion), and compatibility with a small-volume, digital-ELISA assay for secreted proteins. The SiM-hNVU will be validated with functional assays of blood-brain barrier (BBB) function, protein expression studies, and transcriptional analysis. We will also build a iPSC NVU in which each cellular component of the NVU carries the ApoE4 allele. The expression of the ApoE4 lipoprotein drives BBB dysfunction by a known pathway and increases the risk of cognitive impairment in humans and animals experiencing brain inflammation. We will use the ApoE4-NVU as a `diseased BBB on a chip? which we hypothesize will show enhanced vulnerabilities to candidate mechanisms of brain injury identified by our team and others. Specifically, we will test the hypotheses that 1) pre-activated monocytes invade the brain and drive microglial activation; 2) the damage associated molecular pattern (DAMP) complex S100A8/A9 drive BBB breakdown to promote leukocyte infiltration and neuroinflammation; and 3) circulating factors that degrade endothelial glycocaylx (e.g., heparinase) or contribute to systemic inflammation (cell-free hemoglobin) promote CNS infiltration of leukocytes and subsequent neuroinflammation.

Public Health Relevance

Cognitive impairment is a common debilitating outcome of sepsis with an unknown mechanism. The study of brain injury in sepsis and other forms of systemic inflammation is limited by a lack of in vitro tools that model the interface between the blood and brain. This project will address this unmet need by building a human neurovascular unit chip where circulating factors are introduced on the `blood side' and a microglia report on inflammatory status on the `brain side.'

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Project #
1R61HL154249-01
Application #
10063709
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Ochocinska, Margaret J
Project Start
2020-09-03
Project End
2022-08-31
Budget Start
2020-09-03
Budget End
2021-08-31
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Rochester
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627