Amifostine (Ethyol [R], WR-2721) is a cytoprotective drug that has been approved by the U.S. FDA for intravenous administration in cancer patients receiving radiation therapy and certain forms of chemotherapy. The chemoprotective and radioprotective benefits of amifostine remain grossly underutilized not because of limitations of efficacy but mainly because its administration is limited to intravenous and subcutaneous routes. Amifostine is not effective when administered orally - one of the most preferred routes of drug administration. Three years ago we began an effort to overcome this limitation by developing a formulation where amifostine's premature inactivation in the gastrointestinal tract was prevented due to its incorporation in a protective polymeric matrix. The results of this effort and published work by others clearly indicate that the development of such a formulation is indeed quite feasible. In the current application, we therefore propose to follow up on our initial success in developing a prototype of orally active sustained release formulation of amifostine. While our prototype formulation clearly establishes the scientific validity of our approach, its practical application in clinic demands extensive optimization and rigorous testing which we propose in this application as the logical extension of our current work. We hypothesize that amifostine can be successfully formulated to provide an oral dosage form with significant chemo-and radioprotection under clinical settings. The following specific aims delineate the step-wise approach towards such development: (I) Optimize the prototype sustained release nanoeapsule formulation of amifostine: Prepare new batches using the spray-drying technique and optimize processing parameters to: a) obtain desired particle size distribution and particle morphology, b) maximize the yield, c) maximize the efficiency of encapsulation, and d) minimize the presence of residual solvent; (II) Optimize for in vitro amifostine release characteristics to obtain one formulation with 20%-30% initial drug release followed by continued release for 3 days, and another formulation with 5%-10% initial drug release followed by continued release for 7 days; (lII) Conduct in viva studies using CD2F1 male mice to: a) Evaluate relative bioavailability of amifostine b) Optimize the absorption and tissue distribution characteristics and c) Evaluate and optimize for radioproteetive efficacy against both acute whole body gamma irradiation (9.0 GY) and fractionated whole body gamma irradiation (three consecutive treatments of 3.0 GY/day). The radioprotective efficacy will be measured using the following parameters: 30-day survival, changes in intestinal permeability, jejunal crypt cell survival, and bone marrow hemopoietic progenitor cell survival (erythroids and granulocytes/monocytes); and (IV) Evaluate the long-term (up to six months) thermal stability of the two best formulations. Following the successful preclinlcal evaluations in mice, this novel delivery system can be used, in the future, for evaluation in dogs followed by human clinical trials. Development of such a formulation will mark an important advancement in the field of chemoprotection and radioprotection during cancer therapy.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Minority Biomedical Research Support - MBRS (S06)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Xavier University of Louisiana
New Orleans
United States
Zip Code
Shimada, Tsutomu; Takenaka, Shigeo; Kakimoto, Kensaku et al. (2016) Structure-Function Studies of Naphthalene, Phenanthrene, Biphenyl, and Their Derivatives in Interaction with and Oxidation by Cytochromes P450 2A13 and 2A6. Chem Res Toxicol 29:1029-40
Shimada, Tsutomu; Takenaka, Shigeo; Murayama, Norie et al. (2016) Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P450 2A13. Xenobiotica 46:211-24
Liu, Jiawang; Pham, Peter T; Skripnikova, Elena V et al. (2015) A Ligand-Based Drug Design. Discovery of 4-Trifluoromethyl-7,8-pyranocoumarin as a Selective Inhibitor of Human Cytochrome P450 1A2. J Med Chem 58:6481-93
Goyal, Navneet; Liu, Jiawang; Lovings, La'Nese et al. (2014) Ethynylflavones, highly potent, and selective inhibitors of cytochrome P450 1A1. Chem Res Toxicol 27:1431-9
Liu, Jiawang; Taylor, Shannon F; Dupart, Patrick S et al. (2013) Pyranoflavones: a group of small-molecule probes for exploring the active site cavities of cytochrome P450 enzymes 1A1, 1A2, and 1B1. J Med Chem 56:4082-92
Foroozesh, Maryam; Jiang, Quan; Sridhar, Jayalakshmi et al. (2013) DESIGN, SYNTHESIS, AND EVALUATION OF CARBAZOLE ANALOGS AS POTENTIAL CYTOCHROME P450 INHIBITORS. J Undergrad Chem Res 12:92-95
Foroozesh, Maryam; Jiang, Quan; Sridhar, Jayalakshmi et al. (2013) DESIGN, SYNTHESIS, AND EVALUATION OF A FAMILY OF PROPARGYL PYRIDINYL ETHERS AS POTENTIAL CYTOCHROME P450 INHIBITORS. J Undergrad Chem Res 12:91-94
Shimada, Tsutomu; Kim, Donghak; Murayama, Norie et al. (2013) Binding of diverse environmental chemicals with human cytochromes P450 2A13, 2A6, and 1B1 and enzyme inhibition. Chem Res Toxicol 26:517-28
Liu, Jiawang; Sridhar, Jayalakshmi; Foroozesh, Maryam (2013) Cytochrome P450 family 1 inhibitors and structure-activity relationships. Molecules 18:14470-95
Liu, Jiawang; Nguyen, Thong T; Dupart, Patrick S et al. (2012) 7-Ethynylcoumarins: selective inhibitors of human cytochrome P450s 1A1 and 1A2. Chem Res Toxicol 25:1047-57

Showing the most recent 10 out of 34 publications