This study is designed to """"""""map"""""""" the three-dimensional structure and electronic character of a series of arylacetylenes known to act as mechanism based inhibitors of P450 1A1, 1A2, and 2B1. The mapping will include the overall geometry of the molecules as determined by X-ray crystallographic techniques. It will also include the electronic characteristics of the acetylene group determined by net atomic charges, electron density distributions, and electrostatic potentials. To calculate these quantities, carefully measured experimental x-ray diffraction data will be collected on 4-propynylbiphenyl and 2-ethynylpyrene. Both of these compounds have been determined to be selective mechanism based inhibitors and able to discriminate between P450 1A and 1B enzymes. A molecular modeling study of a large series of arylacetylenes known to act as inhibitors of P450 enzymes is proposed. This study will include determination of the 3D-QSAR and a pharmacophore map. A CoMFA study will be used to extract the relationship between the mechanism based inhibition and the three-dimensional features (steric, electrostatic, and lipophilic) of the molecules. A homology model of P450 1A1, 1A2, and 2B1 will be built based on crystallographic information available from the protein crystal structure of P450 BM-3 and used to explore the mechanism of arylacetylene inhibition of P450.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Minority Biomedical Research Support - MBRS (S06)
Project #
5S06GM008008-35
Application #
7222677
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2006-04-01
Budget End
2007-03-31
Support Year
35
Fiscal Year
2006
Total Cost
$102,076
Indirect Cost
Name
Xavier University of Louisiana
Department
Type
DUNS #
020857876
City
New Orleans
State
LA
Country
United States
Zip Code
70125
Shimada, Tsutomu; Takenaka, Shigeo; Kakimoto, Kensaku et al. (2016) Structure-Function Studies of Naphthalene, Phenanthrene, Biphenyl, and Their Derivatives in Interaction with and Oxidation by Cytochromes P450 2A13 and 2A6. Chem Res Toxicol 29:1029-40
Shimada, Tsutomu; Takenaka, Shigeo; Murayama, Norie et al. (2016) Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P450 2A13. Xenobiotica 46:211-24
Liu, Jiawang; Pham, Peter T; Skripnikova, Elena V et al. (2015) A Ligand-Based Drug Design. Discovery of 4-Trifluoromethyl-7,8-pyranocoumarin as a Selective Inhibitor of Human Cytochrome P450 1A2. J Med Chem 58:6481-93
Goyal, Navneet; Liu, Jiawang; Lovings, La'Nese et al. (2014) Ethynylflavones, highly potent, and selective inhibitors of cytochrome P450 1A1. Chem Res Toxicol 27:1431-9
Liu, Jiawang; Taylor, Shannon F; Dupart, Patrick S et al. (2013) Pyranoflavones: a group of small-molecule probes for exploring the active site cavities of cytochrome P450 enzymes 1A1, 1A2, and 1B1. J Med Chem 56:4082-92
Foroozesh, Maryam; Jiang, Quan; Sridhar, Jayalakshmi et al. (2013) DESIGN, SYNTHESIS, AND EVALUATION OF CARBAZOLE ANALOGS AS POTENTIAL CYTOCHROME P450 INHIBITORS. J Undergrad Chem Res 12:92-95
Foroozesh, Maryam; Jiang, Quan; Sridhar, Jayalakshmi et al. (2013) DESIGN, SYNTHESIS, AND EVALUATION OF A FAMILY OF PROPARGYL PYRIDINYL ETHERS AS POTENTIAL CYTOCHROME P450 INHIBITORS. J Undergrad Chem Res 12:91-94
Shimada, Tsutomu; Kim, Donghak; Murayama, Norie et al. (2013) Binding of diverse environmental chemicals with human cytochromes P450 2A13, 2A6, and 1B1 and enzyme inhibition. Chem Res Toxicol 26:517-28
Liu, Jiawang; Sridhar, Jayalakshmi; Foroozesh, Maryam (2013) Cytochrome P450 family 1 inhibitors and structure-activity relationships. Molecules 18:14470-95
Liu, Jiawang; Nguyen, Thong T; Dupart, Patrick S et al. (2012) 7-Ethynylcoumarins: selective inhibitors of human cytochrome P450s 1A1 and 1A2. Chem Res Toxicol 25:1047-57

Showing the most recent 10 out of 34 publications