Children under two years of age, the elderly, and individuals with underlying disease are to great risk of developing pneumococcal otitis media, septicemia, meningitis, and pneumonia. Antibiotic prophylaxis and vaccination are the two major methods to treat and prevent invasive pneumococcal infections. However, the success of antibiotic treatments has been limited by the recent isolation of penicillin-or multi-drug resistant pneumococci. The current pneumococcal vaccine, a mixture of capsular polysaccharide of 23 most prevalent of possible 84 stereotypes, only elicits type-specific antibodies and can not provide protection against infection of other Streptococcus pneumoniae serotypes not used in the vaccine preparation. To control pneumococcal disease would require a new knowledge about the biology of S. pneumoniae. The long range goal of this investigation is to study how S. pneumoniae survives in infected animals where most of iron molecules are sequestered by iron-binding proteins, such as hemoglobin, transferrin, and lactoferrin. Iron limitation restricted the growth of S. pneumoniae and the limited growth could be restored by the addition of hemin or hemoglobin. Pneumococcal cells have a great ability to bind hemin. Several hemin binding proteins have been identified in the cell lysate of S. pneumoniae with the major species migrated as a molecular mass of 43 kDa.
The specific aims of this proposal are employing genetic and immunological methods to seek answers to the following question: 1). What is the genetic determinant of 43-kDa hemin binding protein? 2). What roles does 43-kDa HBP play in the hemin acquisition of S. pneumoniae? 3) What roles does 43-kDa HBP play in S. pneumoniae infection in experimental animals? Results generated from the proposed studies not only will provide us with basic information about the iron acquisition of S. pneumoniae, but will allow us to gain insight into the pathogenic mechanism of S. pneumoniae disease. The knowledge obtained in this study will have practical applications as well in designing effective therapeutic strategy and agents for the control of pneumococcal disease.

Project Start
2001-08-01
Project End
2002-07-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
31
Fiscal Year
2001
Total Cost
$131,864
Indirect Cost
Name
Howard University
Department
Type
DUNS #
056282296
City
Washington
State
DC
Country
United States
Zip Code
20059
Faruque, Mezbah U; Chen, Guanjie; Doumatey, Ayo P et al. (2017) Transferability of genome-wide associated loci for asthma in African Americans. J Asthma 54:1-8
Johnston, Henry Richard; Hu, Yi-Juan; Gao, Jingjing et al. (2017) Identifying tagging SNPs for African specific genetic variation from the African Diaspora Genome. Sci Rep 7:46398
Kessler, Michael D; Yerges-Armstrong, Laura; Taub, Margaret A et al. (2016) Challenges and disparities in the application of personalized genomic medicine to populations with African ancestry. Nat Commun 7:12521
Liu, Ching-Ti; Raghavan, Sridharan; Maruthur, Nisa et al. (2016) Trans-ethnic Meta-analysis and Functional Annotation Illuminates theĀ Genetic Architecture of Fasting Glucose and Insulin. Am J Hum Genet 99:56-75
Rand, Kristin A; Rohland, Nadin; Tandon, Arti et al. (2016) Whole-exome sequencing of over 4100 men of African ancestry and prostate cancer risk. Hum Mol Genet 25:371-81
Mathias, Rasika Ann; Taub, Margaret A; Gignoux, Christopher R et al. (2016) A continuum of admixture in the Western Hemisphere revealed by the African Diaspora genome. Nat Commun 7:12522
Ehret, Georg B (see original citation for additional authors) (2016) The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet 48:1171-1184
Kurian, P; Dunston, G; Lindesay, J (2016) How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases. J Theor Biol 391:102-12
Ogunjirin, Adebowale E; Fortunak, Joseph M; Brown, LaVerne L et al. (2015) Competition, Selectivity and Efficacy of Analogs of A-84543 for Nicotinic Acetylcholine Receptors with Repositioning of Pyridine Nitrogen. Neurochem Res 40:2131-42
Winchester, Danyelle; Ricks-Santi, Luisel; Mason, Tshela et al. (2015) SPINK1 Promoter Variants Are Associated with Prostate Cancer Predisposing Alterations in Benign Prostatic Hyperplasia Patients. Anticancer Res 35:3811-9

Showing the most recent 10 out of 152 publications