Many changes occur in experimental animals (ob/ob mice) as a result of obesity. The ob/ob mice have been shown to be diabetic and have an increased level of insulin as well as corticosterone (Uysal et al., 1997). Others have also shown that there is an increased level of the cytokine, TNF-alpha, in the serum of these mice (Hotamisligil, 1993) which has been shown to cause a decrease in the level of testosterone in vitro (Xiong and Hales, 1993a). Regulation and expression of certain steroidogenic enzymes such as CYPO17c and CYPscc have been shown to be decreased following in vitro exposure of mouse Leydig cells to TNF-alpha. Changes in the steroidogenic enzymes may lead to decreased levels of testosterone which could ultimately affect the sterility of these animals. In this study, several protocols have been proposed that will be utilized to elucidate the mechanism by which TNF-alpha causes reduction of certain steroidogenic enzymes. The hypothesis of this study is that the increase in TNF-alpha, secondary to obesity, may cause a reduction in the levels or activity of some or all of the steroidogenic enzymes producing a decrease in testosterone production. A prolonged decrease in testosterone levels or production may affect spermatogenesis and thus contribute to male infertility or subfertility. Specifically, I propose the following: 1) To determine the changes in steroidogenic enzymes following the treatment of lean and ob/ob mice with TNF- alpha; 2) To determine the changes in steroidogenic enzymes following the treatment of lean and ob/ob mice with pentoxyfilline and antibodies directed to TNF-alpha; and 3) To determine the changes in steroidogenic enzymes in TNF-alpha receptor (both receptors) knockout ob/ob mice.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Minority Biomedical Research Support - MBRS (S06)
Project #
2S06GM008047-29
Application #
6436268
Study Section
Minority Programs Review Committee (MPRC)
Project Start
1993-01-01
Project End
2005-12-31
Budget Start
Budget End
Support Year
29
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Jackson State University
Department
Type
DUNS #
044507085
City
Jackson
State
MS
Country
United States
Zip Code
39217
Beqa, Lule; Fan, Zhen; Singh, Anant Kumar et al. (2011) Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl Mater Interfaces 3:3316-24
Khan, Sadia Afrin; Singh, Anant K; Senapati, Dulal et al. (2011) Targeted highly sensitive detection of multi-drug resistant Salmonella DT104 using gold nanoparticles. Chem Commun (Camb) 47:9444-6
Singh, Anant K; Lu, Wentong; Senapati, Dulal et al. (2011) Long-range nanoparticle surface-energy-transfer ruler for monitoring photothermal therapy response. Small 7:2517-25
Dadiboyena, Sureshbabu; Valente, Edward J; Hamme 2nd, Ashton T (2010) Synthesis of Novel Pyrazoles via [2+3]-Dipolar Cycloaddition Using Alkyne Surrogates. Tetrahedron Lett 51:1341
Stewart, Gernerique; Smith, Keonia; Chornes, Ashley et al. (2010) PHOTOCHEMICAL REACTION OF NITRO-POLYCYCLIC AROMATIC HYDROCARBONS: EFFECT BY SOLVENT AND STRUCTURE. Environ Chem Lett 8:301-306
Zhao, Shulin; Huang, Yong; Shi, Ming et al. (2010) Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem 82:2036-41
Ray, Paresh Chandra (2010) Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev 110:5332-65
Huang, Yong; Zhao, Shulin; Shi, Ming et al. (2010) Chemiluminescent immunoassay of thyroxine enhanced by microchip electrophoresis. Anal Biochem 399:72-7
Wang, Shuguang; Singh, Anant K; Senapati, Dulal et al. (2010) Rapid colorimetric identification and targeted photothermal lysis of Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles. Chemistry 16:5600-6
Lu, Wentong; Singh, Anant Kumar; Khan, Sadia Afrin et al. (2010) Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J Am Chem Soc 132:18103-14

Showing the most recent 10 out of 119 publications