One of the biggest problems encountered in therapeutics is the extreme variability that exists in the response to drugs. While factors such as age, sex, obesity, renal and liver disease have accounted for some of this variability it is becoming increasingly clear that ethnic background pharmacogenetic makeup are also very important contributors. Enzymes that are primarily involved in the metabolism of drugs may exhibit different activities or may occur in different amounts among populations of diverse ethnic backgrounds. Thus differences in response to drugs could be attributed, in part to the existence of drug metabolizing enzyme polymorphisms; in particular, those enzymes responsible for the acetylation, oxidation, hydroxylation, and methylation of drugs. The frequency of many of these polymorphisms have not been identified for many ethnic populations. It is therefore the intention of this proposal to determine the occurrence of dapsone acetylation, debrisoquine hydroxylation, mephenytoin hydroxylation, thiopurine-S-methylation and catechol-O-methylation polymorphisms in the Black American, Haitian, and Seminole Indian populations of South Florida. Subjects from these ethnic groups will receive the above probe drugs and blood and urine samples will be analyzed for parent drug and metabolites. The individual polymorphisms will be determined based on the extent of metabolism of these test drugs. Thiopurine and catechol methylation polymorphisms will be determined by measuring the respective blood cell methyltransferase enzyme activities.

Project Start
Project End
Budget Start
Budget End
Support Year
19
Fiscal Year
1991
Total Cost
Indirect Cost
Name
Florida Agricultural and Mechanical University
Department
Type
DUNS #
City
Tallahassee
State
FL
Country
United States
Zip Code
32307
Johnston, Jermaine G; Pollock, David M (2018) Circadian regulation of renal function. Free Radic Biol Med 119:93-107
Adams, Mark K; Lee, Seung-Ah; Belyaeva, Olga V et al. (2017) Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10. Chem Biol Interact 276:88-94
Mochona, Bereket; Jackson, Timothy; McCauley, DeCoria et al. (2016) Synthesis and Cytotoxic Evaluation of Pyrrole Hetarylazoles Containing Benzimidazole/Pyrazolone/1,3,4-Oxadiazole Motifs. J Heterocycl Chem 53:1871-1877
Engel, Krysta L; French, Sarah L; Viktorovskaya, Olga V et al. (2015) Spt6 Is Essential for rRNA Synthesis by RNA Polymerase I. Mol Cell Biol 35:2321-31
Ayuk-Takem, Lambert; Amissah, Felix; Aguilar, Byron J et al. (2014) Inhibition of polyisoprenylated methylated protein methyl esterase by synthetic musks induces cell degeneration. Environ Toxicol 29:466-77
Chougule, Mahavir B; Patel, Apurva R; Patlolla, Ram et al. (2014) Epithelial transport of noscapine across cell monolayer and influence of absorption enhancers on in vitro permeation and bioavailability: implications for intestinal absorption. J Drug Target 22:498-508
Culpepper, Bonnie K; Webb, William M; Bonvallet, Paul P et al. (2014) Tunable delivery of bioactive peptides from hydroxyapatite biomaterials and allograft bone using variable-length polyglutamate domains. J Biomed Mater Res A 102:1008-16
Errahali, Younes J; Thomas, Leeshawn D; Keller 3rd, Thomas C S et al. (2013) Inhibition by new glucocorticoid antedrugs [16?, 17?-d] isoxazoline and [16?, 17?-d]-3'-hydroxy-iminoformyl isoxazoline derivatives of chemotaxis and CCL26, CCL11, IL-8, and RANTES secretion. J Interferon Cytokine Res 33:493-507
Stephenson, Adrienne P; Schneider, Jeffrey A; Nelson, Bryant C et al. (2013) Manganese-induced oxidative DNA damage in neuronal SH-SY5Y cells: attenuation of thymine base lesions by glutathione and N-acetylcysteine. Toxicol Lett 218:299-307
Godugu, Chandraiah; Patel, Apurva R; Doddapaneni, Ravi et al. (2013) Inhalation delivery of Telmisartan enhances intratumoral distribution of nanoparticles in lung cancer models. J Control Release 172:86-95

Showing the most recent 10 out of 40 publications