At extremely high altitudes where mammals become cold and comatose, birds maintain their metabolism, keep warm and even fly. Hemorrhaged birds replace their blood with interstitial fluid, become extremely anemic, yet their vital signs remain normal. Few adaptations have been found to explain birds' greater hypoxia and hemorrhage endurance, especially at temperatures of -25 degrees Centigrade or below.
The specific aim i s therefore to test the hypothesis that specialized adaptations account for avian tolerance of hypoxia or hemorrhagic anemia in extreme cold. For example, preliminary evidence indicates that birds may use the membranes of their nasal passages to extract extra oxygen from air and to direct that oxygen preferentially to the brain with the aid of special circulatory pathways in their heads. Additional new data indicate that bird erythrocytes take up fluid and become enlarged during hypoxia. This may cause changes in the chemistry of the erythrocytes that would improve their ability to transport oxygen. Yet another possibility is that bird lungs, which are structurally and functionally different from mammal lungs, may improve their gas-exchange The proposed research is designed to confirm and investigate all of these possibilities in two species of birds, pigeons and ducks, breathing normoxic air or hypoxic air equivalent to extreme altitudes, while exposed to profound cold or thermoneutrality. Since birds tolerate blood loss that reduces their blood oxygen content to levels characteristic of high altitude, birds will also be subjected to hemorrhage as a way of making them anemic and hypoxic for comparison with birds made hypoxic by breathing hypoxic area. Birds undergo acclimational changes that affect their responses to the experimental conditions to be used in these experiments. They will therefore also be acclimated to hypoxia, to cold, or to hypoxia and cold together, for comparison with unacclimated control birds. Among the specific functions to be studied are cardiac and pulmonary mechanics, erythrocyte volume regulation and gas transport, and cerebral blood flow and oxygen delivery. The elucidation of mechanisms that confer hypoxia tolerance on birds has biomedical relevance in hemorrhage and shock, stroke, coronary artery blockage, and altitude sickness. Bird adaptations may even suggest means to improve mammalian hypoxia tolerance.

Project Start
2001-06-01
Project End
2002-05-31
Budget Start
Budget End
Support Year
27
Fiscal Year
2001
Total Cost
$68,672
Indirect Cost
Name
New Mexico State University Las Cruces
Department
Type
DUNS #
City
Las Cruces
State
NM
Country
United States
Zip Code
88003
Pfister, Katherine; Shook, David R; Chang, Chenbei et al. (2016) Molecular model for force production and transmission during vertebrate gastrulation. Development 143:715-27
Edelaar, Pim; Roques, Severine; Hobson, Elizabeth A et al. (2015) Shared genetic diversity across the global invasive range of the monk parakeet suggests a common restricted geographic origin and the possibility of convergent selection. Mol Ecol 24:2164-76
Keyhaninejad, Neda; Curry, Jeanne; Romero, Joslynn et al. (2014) Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit. Plant Sci 215-216:59-68
Richins, Richard D; Kilcrease, James; Rodgriguez-Uribe, Laura et al. (2014) Carotenoid Extraction and Quantification from Capsicum annuum. Bio Protoc 4:
Unguez, Graciela A (2013) Electric fish: new insights into conserved processes of adult tissue regeneration. J Exp Biol 216:2478-86
Cuaron, Jesus A; Dulal, Santosh; Song, Yang et al. (2013) Tea tree oil-induced transcriptional alterations in Staphylococcus aureus. Phytother Res 27:390-6
Güth, Robert; Pinch, Matthew; Unguez, Graciela A (2013) Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus. J Exp Biol 216:2469-77
Guerrero-Ferreira, Ricardo; Gorman, Clayton; Chavez, Alba A et al. (2013) Characterization of the bacterial diversity in Indo-West Pacific loliginid and sepiolid squid light organs. Microb Ecol 65:214-26
Young, Jennifer A; Karmakar, Sukhen; Jacobs, Hollie K et al. (2012) Synthetic approaches to mixed ligand chelators on t-butylphenol-formaldehyde oligomer (PFO) platforms. Tetrahedron 68:10030-10039
Ortega, Jose Luis; Wilson, Olivia L; Sengupta-Gopalan, Champa (2012) The 5' untranslated region of the soybean cytosolic glutamine synthetase ?(1) gene contains prokaryotic translation initiation signals and acts as a translational enhancer in plants. Mol Genet Genomics 287:881-93

Showing the most recent 10 out of 106 publications