One of the most challenging problems in Cell Biology is to understand the mechanisms by which Molecular Chaperones assist protein folding in nature. These mediators have been implicated in a wide range of fundamental biological events including; preventing formation of proteinaceous aggregates, promoting assembly and/or disassembly of oligomeric enzymes, and aiding in the protein translocation process. The emerging evidence suggests that Chaperones are ubiquitous and there is intensive interest in unraveling the precise molecular events by which this class of proteins functions at the cellular level. Moreover, recent studies conclusively demonstrate that the etiology of a variety of pathological conditions could be explained based in alterations in the expression and function of Molecular Chaperones. For instance, alterations in the expression and activation of these mediators have been convincingly demonstrated in the development of autoimmune diseases, viral and bacterial infections, cancer, and muscular dystrophy. During the last few years, we have been able to identify and biochemically characterize three Chaperones, Cpn60, Cpn10 and Hsp70 from the bacterium C. vinosum, and more. Recently, we been have successful in identifying other Chaperone systems, from the same organism, which appear to be homologs of the DnaJ, GrpE and ClpB families. Some of these mediators suffer phosphorylation and, in the present application we intend to obtain information in regards to the biological significance of this finding. The hypothesis to be tested in this proposal is that the ability of Chromatium vinosum Cpn60 in modulating protein folding events is controlled by protein phosphorylation and by its direct physical interaction with other Molecular Chaperones. This hypothesis will be tested by pursuing the following specific aims: (1) to evaluate the influence of various Molecular Chaperone Systems; DnaK, GrpE, DnaJ, Cpn10 and CIpB, in modulating the autophosphorylation of Cpn60 from C. vinosum; (2) to study the ability of Cpn60, in combination with other Chaperone systems, to favor disaggregation and refolding of denatured proteins; (3) to study the intracellular location of various Chaperone systems from C. vinosum, namely DnaK, DnaJ, GrpE, ClpB, and Cpn60/Cpn10, under heat shock and other stressful conditions; (4) to study the conditions that favor the Cpn60 binding to the cytoplasmic membranes of C. vinosum; (5) to study the properties of phosphorylated Cpn60 from C. vinosum under heat shock conditions and; (6) to study the impact of the Cpn60 catalyzed phosphorylation on the functional properties of RuBisCO. Results from these experiments promise to advance our understanding on the mechanisms by which Chaperones modulate protein folding.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Minority Biomedical Research Support - MBRS (S06)
Project #
3S06GM008239-16S2
Application #
6564552
Study Section
Minority Programs Review Committee (MPRC)
Project Start
2001-08-17
Project End
2002-05-31
Budget Start
Budget End
Support Year
16
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Ponce School of Medicine
Department
Type
DUNS #
City
Ponce
State
PR
Country
United States
Zip Code
00732
Diaz-Zabala, Hector J; Ortiz, Ana P; Garland, Lisa et al. (2018) A Recurrent BRCA2 Mutation Explains the Majority of Hereditary Breast and Ovarian Cancer Syndrome Cases in Puerto Rico. Cancers (Basel) 10:
Cuevas, Marielly; Cruz, Myrella L; Ramirez, Antonio E et al. (2018) Stress During Development of Experimental Endometriosis Influences Nerve Growth and Disease Progression. Reprod Sci 25:347-357
Encarnación, Jarline; Ortiz, Carmen; Vergne, Ralphdy et al. (2016) High DRC Levels Are Associated with Let-7b Overexpression in Women with Breast Cancer. Int J Mol Sci 17:
Matta, Jaime; Morales, Luisa; Ortiz, Carmen et al. (2016) Estrogen Receptor Expression Is Associated with DNA Repair Capacity in Breast Cancer. PLoS One 11:e0152422
Pérez, Wanda I; Soto, Yarelys; Ortíz, Carmen et al. (2015) Ferrocenes as potential chemotherapeutic drugs: synthesis, cytotoxic activity, reactive oxygen species production and micronucleus assay. Bioorg Med Chem 23:471-9
Mateo, Z; Porter, J T (2015) Developmental decline in modulation of glutamatergic synapses in layer IV of the barrel cortex by group II metabotropic glutamate receptors. Neuroscience 290:41-8
Fourquet, Jessica; Sinaii, Ninet; Stratton, Pamela et al. (2015) Characteristics of women with endometriosis from the USA and Puerto Rico. J Endometr Pelvic Pain Disord 7:129-135
Ruiz, Lynnette A; Báez-Vega, Perla M; Ruiz, Abigail et al. (2015) Dysregulation of Lysyl Oxidase Expression in Lesions and Endometrium of Women With Endometriosis. Reprod Sci 22:1496-508
Quiñones, Maria; Urrutia, Rebecca; Torres-Reverón, Annelyn et al. (2015) Anxiety, coping skills and hypothalamus-pituitary-adrenal (HPA) axis in patients with endometriosis. J Reprod Biol Health 3:
Matos-Ocasio, Félix; Hernández-López, Anixa; Thompson, Kenira J (2014) Ceftriaxone, a GLT-1 transporter activator, disrupts hippocampal learning in rats. Pharmacol Biochem Behav 122:118-21

Showing the most recent 10 out of 91 publications