Sensory systems are continually challenged by the task of recognizing sources within a background of ambient noise. Research in sensory science should explain how this task is accomplished and identify stimuli that allow an animal to direct appropriate behaviors. The present study addresses this problem for two important detectors of vibratory sources--the inner ear and the closely related lateral line system of fishes. These closely related systems are proposed as a model of multi-sensory processing, for while the mammalian sense of hearing (in air) relies only on the detection of pressure fluctuations, most aquatic animals use multiple sensors to detect vibratory sources. These multiple systems provide information not only about the propagating pressure wave, but also two other aspects of the sound field surrounding a vibratory source: The acceleration field detected by inertial sensors of the inner ear; and the pattern of water motions detected by the lateral line. Thus each of these sensors responds to the same stimuli, but detects different physical aspects of the stimulus, and each has unique transduction mechanisms (the ways stimulus energy is transformed to neural activity). This study test hypotheses of how transduction mechanisms dictate the relevant aspect of the stimulus, which will increase our understanding of the biophysics of stimulus transduction in auditory systems. Further, this study will determine the ways in which multiple sensory systems are brought to bear in the perception of the natural environment. Unlike the majority of existing studies of these systems, which have been performed against a quiet background, this proposal measures the ability to detect spatially discrete signals and discriminate source location in both quiet and noisy settings. Another important feature of our experimental approach is the use of natural stimuli (vibratory dipoles rather than loudspeakers) that are effective for multiple hearing-related submodalities. This study is aimed at documenting and testing the ways multiple sensory systems combine to create unitary percepts in real-world situations. This research is important for the development of rehabilitation strategies following partial sensory loss and for the development of better sensory prostheses and automated sensors.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Minority Biomedical Research Support - MBRS (S06)
Project #
5S06GM060654-08
Application #
7391705
Study Section
Minority Programs Review Committee (MPRC)
Project Start
Project End
Budget Start
2007-04-01
Budget End
2008-03-31
Support Year
8
Fiscal Year
2007
Total Cost
$159,759
Indirect Cost
Name
Hunter College
Department
Type
DUNS #
620127915
City
New York
State
NY
Country
United States
Zip Code
10065
Luine, Victoria; Gomez, Juan; Beck, Kevin et al. (2017) Sex differences in chronic stress effects on cognition in rodents. Pharmacol Biochem Behav 152:13-19
Gupta, Rupal; Huang, Wenlin; Francesconi, Lynn C et al. (2017) Effect of positional isomerism and vanadium substitution on 51V magic angle spinning NMR Spectra Of Wells-Dawson polyoxotungstates. Solid State Nucl Magn Reson 84:28-33
Luine, Victoria (2016) Estradiol: Mediator of memories, spine density and cognitive resilience to stress in female rodents. J Steroid Biochem Mol Biol 160:189-95
Luine, Victoria (2015) Recognition memory tasks in neuroendocrine research. Behav Brain Res 285:158-64
Frankfurt, Maya; Luine, Victoria (2015) The evolving role of dendritic spines and memory: Interaction(s) with estradiol. Horm Behav 74:28-36
DeCicco, Jennifer M; O'Toole, Laura J; Dennis, Tracy A (2014) The late positive potential as a neural signature for cognitive reappraisal in children. Dev Neuropsychol 39:497-515
Luine, Victoria N (2014) Estradiol and cognitive function: past, present and future. Horm Behav 66:602-18
Garcia, Miguel; Ray, Sibnath; Brown, Isaiah et al. (2014) PakD, a putative p21-activated protein kinase in Dictyostelium discoideum, regulates actin. Eukaryot Cell 13:119-26
O'Toole, Laura J; DeCicco, Jennifer M; Berthod, Samantha et al. (2013) The N170 to angry faces predicts anxiety in typically developing children over a two-year period. Dev Neuropsychol 38:352-63
Garcia, Rebecca; Nguyen, Liem; Brazill, Derrick (2013) Dictyostelium discoideum SecG interprets cAMP-mediated chemotactic signals to influence actin organization. Cytoskeleton (Hoboken) 70:269-80

Showing the most recent 10 out of 202 publications