We seek support for an interdisciplinary Training Program in Functional Proteomics of Aging for both predoctoral and postdoctoral trainees at the University of Minnesota. This Training Program contains two major components: (1) Research training that focuses on the use of proteomic technology to reveal the molecular details behind the age-related loss in tissue function. (2) Didactic and experiential training in gerontology and proteomics to provide trainees with a solid foundation for launching successful careers in aging research. The research component of this Training Program consists of three research areas that focus on retaining physiological function during aging: muscle (Thomas, Thompson, Lowe, Arriaga, Ervasti), the central nervous system (Olsen, Ferrington, Low, Ervasti) and metabolism and longevity (Bernlohr, Arriaga, Griffin, Hendrickson, Kim, Low). These Program Faculty members are drawn from two graduate programs at the University of Minnesota: Biochemistry, Molecular Biology and Biophysics (BMBB) and Rehabilitation Sciences (RSc). Proteomic analysis is utilized by Training Faculty to reveal altered protein content, binding partners, and post-translational modifications that occur in aged tissue. This information aids in determining the mechanistic basis for age-related changes in protein structure and function. Our research is supported by outstanding cores equipped with a variety of state-of-the-art mass spectrometers, such as the Center for Mass Spectrometry and Proteomics, and other analytical equipment in Training Faculty laboratories. The Training Program will also include both didactic training via coursework in gerontology and proteomics, as well as experiential training in aging research via seminars, symposia, journal clubs, and group meetings with Program Faculty members. Completion of the Training Program coursework will qualify trainees for a Gerontology Graduate Minor, thus providing direction for trainees'future career goals. The experiential training is designed to maximize interaction among trainees and Training Faculty from multiple labs. In summary, the primary goal of this Training Program is to help exceptional young scientists develop the intellectual and technical tools needed for productive careers as independent investigators and educators in aging research.
Showing the most recent 10 out of 76 publications