A group of investigators at the University of Minnesota seeks to renew Functional Proteomics of Aging, an interdisciplinary Training Program that supports 4 predoctoral and 4 postdoctoral trainees. Program faculty members draw trainees from four graduate programs at the University of Minnesota: Biochemistry, Molecular Biology and Biophysics (BMBB), Rehabilitation Sciences (RSc), Neuroscience (NSc), and Chemistry (Chem). This Training Program contains two major components: (1) Research training that focuses on the use of proteomic technology to reveal the molecular details behind the age-related loss in tissue function and/or age-related disease. (2) Didactic and experiential training in gerontology and proteomics to provide trainees with a solid foundation for launching successful careers in aging research. The research component consists of three research areas that focus on retaining physiological function during aging or understanding disease mechanism: muscle (Ervasti, Lowe, Metzger, Thomas, Thompson), the central nervous system (Ferrington, Li, Low) and energy metabolism and longevity (Arriaga, Bernlohr, Griffin, Hendrickson, Kim). While these areas are broad in scope, they are thematically related through a shared interest in proteomics and aging. Proteomic analysis is utilized by Training faculty to reveal altered protein content, binding partners, and post-translational modifications that occur in aged tissue. This information aids in determining the mechanistic basis for age- and disease-related changes in protein structure and function. Our research is supported by outstanding cores equipped with a variety of state-of-the-art mass spectrometers in the Center for Mass Spectrometry and Proteomics and bioinformatics platforms in the Minnesota Supercomputers Institute. Training faculty laboratories also contain specialized analytical equipment that is commonly shared between Program faculty. This has helped foster extensive interdisciplinary collaborations among faculty and trainees. The Training Program also includes both didactic training via coursework in gerontology and proteomics, as well as experiential training in aging research via conferences, seminars, symposia, journal clubs, and group meetings with Program faculty members. The experiential training is designed to maximize interaction among trainees and Training faculty from multiple labs and with scientists outside the U of MN. In summary, the primary goal of this Training Program is to help exceptional young scientists develop the intellectual and technical tools needed for productive careers as independent investigators and educators in aging research.

Public Health Relevance

Current demographics suggest an impending health epidemic in age-related diseases, creating an urgent need for scientists trained specifically to investigate disease mechanisms. Functional Proteomics of Aging is a training program in basic and translational research in aging for both pre-and post-doctoral trainees. The program's success in its first five years is documented by publications and research career trajectories of past pre- and post-doctoral trainees.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Institutional National Research Service Award (T32)
Project #
5T32AG029796-08
Application #
8850365
Study Section
Special Emphasis Panel (ZAG1-ZIJ-3 (J1))
Program Officer
Velazquez, Jose M
Project Start
2007-04-01
Project End
2018-04-30
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
8
Fiscal Year
2015
Total Cost
$282,606
Indirect Cost
$17,829
Name
University of Minnesota Twin Cities
Department
Physical Medicine & Rehab
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Teravskis, Peter J; Covelo, Ana; Miller, Eric C et al. (2018) A53T Mutant Alpha-Synuclein Induces Tau-Dependent Postsynaptic Impairment Independently of Neurodegenerative Changes. J Neurosci 38:9754-9767
Fisher, Cody R; Ferrington, Deborah A (2018) Perspective on AMD Pathobiology: A Bioenergetic Crisis in the RPE. Invest Ophthalmol Vis Sci 59:AMD41-AMD47
Hottman, David; Cheng, Shaowu; Gram, Andrea et al. (2018) Systemic or Forebrain Neuron-Specific Deficiency of Geranylgeranyltransferase-1 Impairs Synaptic Plasticity and Reduces Dendritic Spine Density. Neuroscience 373:207-217
Baumann, Cory W; Kwak, Dongmin; Ferrington, Deborah A et al. (2018) Downhill exercise alters immunoproteasome content in mouse skeletal muscle. Cell Stress Chaperones 23:507-517
McCourt, Jackie L; Talsness, Dana M; Lindsay, Angus et al. (2018) Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy. Hum Mol Genet 27:451-462
Collins, Brittany C; Mader, Tara L; Cabelka, Christine A et al. (2018) Deletion of estrogen receptor ? in skeletal muscle results in impaired contractility in female mice. J Appl Physiol (1985) 124:980-992
Muratore, Katherine A; Najt, Charles P; Livezey, Nicholas M et al. (2018) Sizing lipid droplets from adult and geriatric mouse liver tissue via nanoparticle tracking analysis. Anal Bioanal Chem 410:3629-3638
Nelson, D'anna M; Lindsay, Angus; Judge, Luke M et al. (2018) Variable rescue of microtubule and physiological phenotypes in mdx muscle expressing different miniaturized dystrophins. Hum Mol Genet 27:2090-2100
Cabelka, Christine A; Baumann, Cory W; Collins, Brittany C et al. (2018) Effects of ovarian hormones and estrogen receptor ? on physical activity and skeletal muscle fatigue in female mice. Exp Gerontol :
Park, Ji-Man; Seo, Minchul; Jung, Chang Hwa et al. (2018) ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction. Autophagy 14:584-597

Showing the most recent 10 out of 76 publications