This Training Grant, now entering its 31st year, provides support for a unique interdisciplinary pre-doctoral training program in Immunology at the Johns Hopkins University School of Medicine. The Training Grant is the core source of funding for the Immunology Training Program. The mission of this interdepartmental program is to provide students with training in cellular, biochemical, and genetic approaches to the biology of the immune response. We seek to provide trainees with the ability to identify significant research questions in immunology, to find solutions to these questions, to think broadly and creatively about biological problems, and to communicate ideas effectively to others. There are 38 faculty members who participate in the program and provide a broad range of training opportunities for trainees. These areas include genetic and cellular aspects of immune development, antigen recognition, immune regulation, tolerance, structural biology of immune proteins, innate immunity, autoimmunity, immune cell signaling, cancer immunology, IgE-mediated immunologic reactions and the host response to infection. In these areas, the training environment is enhanced by institutional strength in relevant areas of basic science and/or clinical medicine. Cross-fertilization between basic research and clinical disease studies is an important aspect of the training environment. The pre-doctoral program places emphasis on rigorous training in basic biochemistry and molecular and cellular biology in addition to immunology. Progress of trainees throughout the didactic and research progress is monitored closely through multiple mechanisms. An extensive and successful program for recruiting minority students has been implemented.

Public Health Relevance

Immune-mediated mechanisms are involved in a striking variety of human diseases, both common and rare. Diseases that involve the immune system affect up to 20% of North Americans, Europeans and Japanese. The goal of the Immunology Training Program is to train the next generation of Immunologists who, through active scholarship contribute to the generation of new knowledge on the basic mechanisms of the immune system and the application of this knowledge to the understanding and treatment of disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Institutional National Research Service Award (T32)
Project #
5T32AI007247-35
Application #
9307667
Study Section
Allergy, Immunology, and Transplantation Research Committee (AITC)
Program Officer
Gondre-Lewis, Timothy A
Project Start
1982-09-01
Project End
2019-07-31
Budget Start
2017-08-01
Budget End
2019-07-31
Support Year
35
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Thiele Orberg, E; Fan, H; Tam, A J et al. (2017) The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol 10:421-433
Pohlmyer, Christopher W; Bullen, C Korin; Martin, Alyssa R et al. (2017) Characterization of Elite Suppressors Cell-Associated HIV-1 mRNA at Baseline and with T Cell Activation??. Yale J Biol Med 90:331-336
Kosmides, Alyssa K; Sidhom, John-William; Fraser, Andrew et al. (2017) Dual Targeting Nanoparticle Stimulates the Immune System To Inhibit Tumor Growth. ACS Nano 11:5417-5429
El-Diwany, Ramy; Cohen, Valerie J; Mankowski, Madeleine C et al. (2017) Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1. PLoS Pathog 13:e1006235
Veenhuis, Rebecca T; Astemborski, Jacquie; Chattergoon, Michael A et al. (2017) Systemic Elevation of Proinflammatory Interleukin 18 in HIV/HCV Coinfection versus HIV or HCV Monoinfection. Clin Infect Dis 64:589-596
Kuzmichev, Yury V; Veenhuis, Rebecca T; Pohlmeyer, Christopher W et al. (2017) A CD3/CD28 microbead-based HIV-1 viral outgrowth assay. J Virus Erad 3:85-89
Walker-Sperling, Victoria E; Pohlmeyer, Christopher W; Veenhuis, Rebecca T et al. (2017) Factors Associated With the Control of Viral Replication and Virologic Breakthrough in a Recently Infected HIV-1 Controller. EBioMedicine 16:141-149
Patel, Chirag H; Powell, Jonathan D (2017) Targeting T cell metabolism to regulate T cell activation, differentiation and function in disease. Curr Opin Immunol 46:82-88
Hallowell, R W; Collins, S L; Craig, J M et al. (2017) mTORC2 signalling regulates M2 macrophage differentiation in response to helminth infection and adaptive thermogenesis. Nat Commun 8:14208
Kwaa, Abena K; Goldsborough, Kennedy; Walker-Sperling, Victoria E et al. (2017) The effect of Ingenol-B on the suppressive capacity of elite suppressor HIV-specific CD8+ T cells. PLoS One 12:e0174516

Showing the most recent 10 out of 182 publications