Developments in virology have led to the development of several classes of therapeutics, including treatments or prevention of microbial infection and gene therapy. Gene therapy holds the promise of therapeutic options for a variety of diseases. A key issue in gene therapy is the development of gene delivery vehicles that evade immune or inflammatory response, are non-toxic, and target the gene effectively. To fulfill the national need for these types of therapeutic options, the UCLA Virology and Gene Therapy Training Program aims to provide a unique and outstanding environment for predoctoral and postdoctoral trainees pursuing research careers in fields related to gene therapy. This program will establish a solid training in fundamental virology and its applications in gene therapy. The research interests of our faculty encompass viral entry, viral gene expression regulation, replication of viral genome, cell biology during viral infection, viral particle assembly, viral carcinogenesis and viral immunology, as well as designing novel vectors and tracking viral vectors in vivo. With strong basic research programs on retroviruses, adenoviruses, SV40, hepatitis C, poliovirus, influenza virus and herpesviruses, our faculty has been and will be continuously developing viral vectors from these viruses and monitoring gene expression in vivo using non-invasive imaging technologies in combination stem cell biology. The trainees will be exposed to clinical and diagnostic issues during their training to underscore the therapeutic applications of their research projects, and be encouraged to form translational collaborations with basic and clinical mentors. This bridge in training environment will enhance the translation from basic science to clinical application in gene and cellular therapy. The training program constitutes 1) original research work with one or more of our faculty; 2) formal course work which provides comprehensive background on virology and gene therapy; and 3) regular research conferences and seminars, presented by invited guest speakers, faculty members and trainees; 4) training in best practices in research, responsible conduct and career development. The training committee will select trainees via a competitive process. Appointments are renewable with satisfactory progress (up to 2 years predoctoral, 1 year postdoctoral). The training program is fully integrated with the reorganized PhD programs in biosciences at UCLA. The progress of the trainees and the program are reviewed periodically. At UCLA, this rigorous training program with emphasis on vertical integration of basic sciences and therapeutic applications produces the scientists required for long-term development of virology and gene therapy.

Public Health Relevance

Viruses cause a variety of diseases but their natural ability to deliver genetic materials into cells can be utilized to reprogram cells against inherited diseases, cancer, AIDS, and immune disorders. This training program is designed to produce future scientists in the fields of virology and gene therapy that will be able to develop antiviral drugs and vaccines, to design new, more effective viral vectors, understand how to apply these vectors to human diseases, and ensure that new therapies are available in the future.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Institutional National Research Service Award (T32)
Project #
5T32AI060567-14
Application #
9300825
Study Section
Microbiology and Infectious Diseases B Subcommittee (MID)
Program Officer
Robbins, Christiane M
Project Start
2004-09-01
Project End
2019-08-31
Budget Start
2017-09-01
Budget End
2018-08-31
Support Year
14
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Pharmacology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Hughes, Taylor E T; Lodowski, David T; Huynh, Kevin W et al. (2018) Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM. Nat Struct Mol Biol 25:53-60
Huynh, Kevin W; Jiang, Jiansen; Abuladze, Natalia et al. (2018) CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1. Nat Commun 9:900
Hu, Junhui; Schokrpur, Shiruyeh; Archang, Maani et al. (2018) A Non-integrating Lentiviral Approach Overcomes Cas9-Induced Immune Rejection to Establish an Immunocompetent Metastatic Renal Cancer Model. Mol Ther Methods Clin Dev 9:203-210
Khoja, Suhail; Nitzahn, Matt; Hermann, Kip et al. (2018) Conditional disruption of hepatic carbamoyl phosphate synthetase 1 in mice results in hyperammonemia without orotic aciduria and can be corrected by liver-directed gene therapy. Mol Genet Metab 124:243-253
Long, Joseph; Hoban, Megan D; Cooper, Aaron R et al. (2018) Characterization of Gene Alterations following Editing of the ?-Globin Gene Locus in Hematopoietic Stem/Progenitor Cells. Mol Ther 26:468-479
Kuo, Caroline Y; Long, Joseph D; Campo-Fernandez, Beatriz et al. (2018) Site-Specific Gene Editing of Human Hematopoietic Stem Cells for X-Linked Hyper-IgM Syndrome. Cell Rep 23:2606-2616
Parvatiyar, Kislay; Pindado, Jose; Dev, Anurupa et al. (2018) A TRAF3-NIK module differentially regulates DNA vs RNA pathways in innate immune signaling. Nat Commun 9:2770
Angarita, Stephanie A K; Truong, Brian; Khoja, Suhail et al. (2018) Human hepatocyte transplantation corrects the inherited metabolic liver disorder arginase deficiency in mice. Mol Genet Metab 124:114-123
Carrillo, Mayra A; Zhen, Anjie; Zack, Jerome A et al. (2017) New approaches for the enhancement of chimeric antigen receptors for the treatment of HIV. Transl Res 187:83-92
Zemke, Nathan R; Berk, Arnold J (2017) The Adenovirus E1A C Terminus Suppresses a Delayed Antiviral Response and Modulates RAS Signaling. Cell Host Microbe 22:789-800.e5

Showing the most recent 10 out of 48 publications