This training program prepares predoctoral graduate students and postdoctoral researchers for careers in the application of physics to the medical diagnosis and treatment of cancer. Available research specializations encompass all areas of physics support for patient treatment, disease diagnosis, and basic physics research applied to cancer. Trainers in the Department of Medical Physics, Radiology, Human Oncology (Radiation Oncology), Oncology, Engineering Physics, and Bio-medical Engineering maintain a broad spectrum of research collaborations with other clinical and basic science researchers. Translational, team driven research includes radiation therapy and radiation biology with the Department of Oncology, traditional x-ray, digital, CT, MRI, ultrasound, and PET imaging with the Department of Radiology, radiation physics with the Departments of Physics and Nuclear Engineering. Trainees are intimate participants in these research programs as collaborators, publishing joint research articles, and performing as investigators in extramurally funded grants and contracts. Extensive faculty contact provides leadership and supervision. Beyond research activities and minor subject requirements, predoctoral trainees as graduate students in Medical Physics take at least twenty-seven credits supportive of medical physics training and oriented towards their research specialization. Postdoctoral trainees are encouraged to broaden and deepen their academic training by auditing- appropriate courses. Trainees give seminars, attend colloquia, present research results at local, national, and international meetings, and co-author articles and reports. An annual training grant symposium provides additional opportunity for trainees to present research results to the Medical Physics and collaborating faculty. In this way trainees of this program are well prepared to assume leadership positions as researchers and academicians in the application of physics to cancer treatment, diagnosis and prevention.

Public Health Relevance

This training program prepares graduate students and postdoctoral trainees in radiological sciences for careers in cancer research. Researchers in this field continue to have a high impact on the diagnosis and treatment of cancer, leading major advances particularly in the areas of medical imaging, image guided intervention and radiation therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
5T32CA009206-32
Application #
7846864
Study Section
Subcommittee G - Education (NCI)
Program Officer
Damico, Mark W
Project Start
1978-08-01
Project End
2014-05-31
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
32
Fiscal Year
2010
Total Cost
$400,293
Indirect Cost
Name
University of Wisconsin Madison
Department
Physics
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Mukherjee, Jogeshwar; Lao, Patrick J; Betthauser, Tobey J et al. (2018) Human brain imaging of nicotinic acetylcholine ?4?2* receptors using [18 F]Nifene: Selectivity, functional activity, toxicity, aging effects, gender effects, and extrathalamic pathways. J Comp Neurol 526:80-95
Ni, Dalong; Jiang, Dawei; Ehlerding, Emily B et al. (2018) Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications. Acc Chem Res 51:778-788
Higano, Nara S; Spielberg, David R; Fleck, Robert J et al. (2018) Neonatal Pulmonary Magnetic Resonance Imaging of Bronchopulmonary Dysplasia Predicts Short-Term Clinical Outcomes. Am J Respir Crit Care Med 198:1302-1311
Shi, Sixiang; Chen, Feng; Goel, Shreya et al. (2018) In Vivo Tumor-Targeted Dual-Modality PET/Optical Imaging with a Yolk/Shell-Structured Silica Nanosystem. Nanomicro Lett 10:65
Campbell, Kirby R; Chaudhary, Rajeev; Handel, Julia M et al. (2018) Polarization-resolved second harmonic generation imaging of human ovarian cancer. J Biomed Opt 23:1-8
Ferreira, Carolina A; Hernandez, Reinier; Yang, Yunan et al. (2018) ImmunoPET of CD146 in a Murine Hindlimb Ischemia Model. Mol Pharm 15:3434-3441
Cox, B L; Ludwig, K D; Adamson, E B et al. (2018) An open source, 3D printed preclinical MRI phantom for repeated measures of contrast agents and reference standards. Biomed Phys Eng Express 4:
England, Christopher G; Jiang, Dawei; Ehlerding, Emily B et al. (2018) 89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging 45:110-120
Guerrero, Quinton W; Fan, Liexiang; Brunke, Shelby et al. (2018) Power Spectrum Consistency among Systems and Transducers. Ultrasound Med Biol 44:2358-2370
Garcia-Ramos, Camille; Dabbs, Kevin; Meyerand, Elizabeth et al. (2018) Psychomotor slowing is associated with anomalies in baseline and prospective large scale neural networks in youth with epilepsy. Neuroimage Clin 19:222-231

Showing the most recent 10 out of 331 publications