This training program prepares predoctoral graduate students and postdoctoral researchers for careers in the application of physics to the medical diagnosis and treatment of cancer. Available research specializations encompass broad areas of physics as applied to disease diagnosis, patient-specific treatment and assessment of treatment efficacy, and basic physics research applied to cancer. Mentors and collaborators in the Departments of Medical Physics, Radiology, Human Oncology (Radiation Oncology), Oncology, Engineering Physics, and Biomedical Engineering maintain a broad spectrum of research collaborations with other clinical and basic science researchers. Translational, team-driven research includes radiation therapy and radiation biology with the Department of Oncology, traditional x-ray, digital, CT, MRI, ultrasound, and PET imaging with the Department of Radiology, and radiation physics with the Departments of Physics and Nuclear Engineering and Human Oncology. Trainees are intimate participants in these research programs as collaborators, publishing joint research articles, and performing as investigators in extramurally funded grants and contracts. Extensive faculty contact provides leadership and supervision. Beyond research activities and minor subject requirements, predoctoral trainees as graduate students in Medical Physics take at least twenty-seven credits supportive of medical physics training and oriented towards their research specialization. Postdoctoral trainees are encouraged to broaden and deepen their academic training by auditing appropriate courses. Both predoctoral and postdoctoral trainees must take or audit additional cancer-specific courses, must attend relevant grand round presentations, and must participate in intensive workshops on manuscript writing and grant writing. Trainees give seminars, attend colloquia, present research results at local, national, and international meetings, and co-author articles and reports. An annual Training Grant Symposium provides additional opportunity for trainees to present research results to the Medical Physics and collaborating faculty. In this way trainees in this program are well prepared to assume leadership positions as researchers and academicians in the application of physics to cancer prevention, diagnosis, and treatment.

Public Health Relevance

This training program prepares graduate students and postdoctoral trainees in radiological sciences for careers in cancer research. Researchers in this field continue to have a high impact on the diagnosis and treatment of cancer, leading to major advances particularly in the areas of medical imaging, image guided intervention and radiation therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
5T32CA009206-37
Application #
9010608
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Perkins, Susan N
Project Start
1978-08-01
Project End
2019-08-31
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
37
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Physics
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Campbell, Kirby R; Chaudhary, Rajeev; Handel, Julia M et al. (2018) Polarization-resolved second harmonic generation imaging of human ovarian cancer. J Biomed Opt 23:1-8
Ferreira, Carolina A; Hernandez, Reinier; Yang, Yunan et al. (2018) ImmunoPET of CD146 in a Murine Hindlimb Ischemia Model. Mol Pharm 15:3434-3441
Cox, B L; Ludwig, K D; Adamson, E B et al. (2018) An open source, 3D printed preclinical MRI phantom for repeated measures of contrast agents and reference standards. Biomed Phys Eng Express 4:
England, Christopher G; Jiang, Dawei; Ehlerding, Emily B et al. (2018) 89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging 45:110-120
Guerrero, Quinton W; Fan, Liexiang; Brunke, Shelby et al. (2018) Power Spectrum Consistency among Systems and Transducers. Ultrasound Med Biol 44:2358-2370
Garcia-Ramos, Camille; Dabbs, Kevin; Meyerand, Elizabeth et al. (2018) Psychomotor slowing is associated with anomalies in baseline and prospective large scale neural networks in youth with epilepsy. Neuroimage Clin 19:222-231
Ehlerding, Emily B; Sun, Lingyi; Lan, Xiaoli et al. (2018) Dual-Targeted Molecular Imaging of Cancer. J Nucl Med 59:390-395
Pinkert, Michael A; Salkowski, Lonie R; Keely, Patricia J et al. (2018) Review of quantitative multiscale imaging of breast cancer. J Med Imaging (Bellingham) 5:010901
Liu, Zhen; Ehlerding, Emily B; Cai, Weibo et al. (2018) One-step synthesis of an 18F-labeled boron-derived methionine analog: a substitute for 11C-methionine? Eur J Nucl Med Mol Imaging 45:582-584
Carlson, Lindsey C; Hall, Timothy J; Rosado-Mendez, Ivan M et al. (2018) Detection of Changes in Cervical Softness Using Shear Wave Speed in Early versus Late Pregnancy: An in Vivo Cross-Sectional Study. Ultrasound Med Biol 44:515-521

Showing the most recent 10 out of 331 publications