The Dana-Farber/Harvard Cancer Center (DF/HCC) is a Harvard-wide, NCI-designated Comprehensive Cancer Center. This training grant is the principal instrument of basic science training at DF/HCC. Our broad goal is to teach young scientists at the predoctoral and postdoctoral levels how to apply emerging technology in genomics and proteomics to fundamental problems in cell division, cell differentiation or cell death (""""""""the three D's"""""""" of cancer cell biology) that underlie human neoplastic disease. ? ? We propose to appoint 4 predoctoral and 12 postdoctoral scientists per year. Our pre-doctoral trainees will be appointed after their second year of study when they have completed laboratory rotations and chosen one of our mentors as their thesis advisor. We anticipate appointing the strongest postdoctoral trainees. Most of our postdoctoral appointments will be for recent recipients of the Ph.D. or M.D./Ph.D. degrees. Applicants with clinical degrees will also be considered for the program if they have tangible evidence of a commitment to basic cancer research as evidenced by prior research experience. However clinical training is excluded from the program. ? ? Laboratory training in cancer research is complemented by a didactic program that prepares our students to exploit a broad range of job opportunities in settings ranging from the small liberal arts college, to academic medical research institutes and the biotechnology industry. Trainee cohesiveness and program identity is addressed on a strategic level with retreats and poster sessions that draw students, postdocs and their mentors from all major components of DF/HCC. On a tactical level, each Department/Division within DF/HCC has journal clubs and seminar programs that provide a sense of local community. ? ? Relevance: A distinguishing feature of this training Program is that all of the preceptors have ongoing or developing relationships with DF/HCC clinical programs in one or more of the major human cancers. These """"""""nodal points"""""""" between clinicians and basic scientists help to initiate and sustain a cancer focus in our trainees. Many of our prior trainees have already made the transition to scientific independence. Their discovery-oriented basic research has contributed in substantive ways to a new generation of targeted therapies for cancer such as Gleevec, Iressa, Herceptin, and Avastin. ? ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
5T32CA009361-27
Application #
7289754
Study Section
Special Emphasis Panel (ZCA1-RTRB-A (M1))
Program Officer
Damico, Mark W
Project Start
1980-07-01
Project End
2011-06-30
Budget Start
2007-07-01
Budget End
2008-06-30
Support Year
27
Fiscal Year
2007
Total Cost
$701,510
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Chiasson-MacKenzie, Christine; Morris, Zachary S; Liu, Ching-Hui et al. (2018) Merlin/ERM proteins regulate growth factor-induced macropinocytosis and receptor recycling by organizing the plasma membrane:cytoskeleton interface. Genes Dev 32:1201-1214
Sandoval, Gabriel J; Pulice, John L; Pakula, Hubert et al. (2018) Binding of TMPRSS2-ERG to BAF Chromatin Remodeling Complexes Mediates Prostate Oncogenesis. Mol Cell 71:554-566.e7
Anvar, Seyed Yahya; Allard, Guy; Tseng, Elizabeth et al. (2018) Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing. Genome Biol 19:46
Wang, Haizhen; Nicolay, Brandon N; Chick, Joel M et al. (2017) The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature 546:426-430
Johannessen, Liv; Sundberg, Thomas B; O'Connell, Daniel J et al. (2017) Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells. Nat Chem Biol 13:1102-1108
Zhou, Jing; Tien, An-Chi; Alberta, John A et al. (2017) A Sequentially Priming Phosphorylation Cascade Activates the Gliomagenic Transcription Factor Olig2. Cell Rep 18:3167-3177
Luck, Katja; Sheynkman, Gloria M; Zhang, Ivy et al. (2017) Proteome-Scale Human Interactomics. Trends Biochem Sci 42:342-354
Drané, Pascal; Brault, Marie-Eve; Cui, Gaofeng et al. (2017) TIRR regulates 53BP1 by masking its histone methyl-lysine binding function. Nature 543:211-216
Liu, Lijun; Michowski, Wojciech; Inuzuka, Hiroyuki et al. (2017) G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells. Nat Cell Biol 19:177-188
Chakraborty, Abhishek A; Nakamura, Eijiro; Qi, Jun et al. (2017) HIF activation causes synthetic lethality between the VHL tumor suppressor and the EZH1 histone methyltransferase. Sci Transl Med 9:

Showing the most recent 10 out of 120 publications