This revised proposal requests renewal of support for a postdoctoral training program at the NCI designated Basic Cancer Center of the Salk Institute for Biological Studies. This program provides advanced training in research to postdoctoral scientists pursuing careers in basic and translational research related to cancer. Major activities include molecular, cell and developmental biology research within the three Cancer Center Programs: Metabolism and Cancer, Mouse Models and Cancer Stem Cells, and Growth Control and Genomic Stability. The Cancer Center occupies 97,000 sq. ft. of laboratory space and includes 32 faculty members, 20 of who are members of the training faculty. Currently there are 162 postdoctoral and 31 predoctoral trainees in the Cancer Center. Trainees devote 100% of their time to research. Trainees in the program are required to participate in a variety of special activities designed to enhance their knowledge of cancer biology and therapeutic applications of basic research, and provided to prepare researchers for a successful independent career. These include symposium organization and the Cancer Center Symposium, grant writing tutorials, clinical round participation, emerging technology training, and the Cancer Biology Course. These activities are designed to significantly augment the cancer relevance and focus of the individual laboratory training experience. This program will support six trainees. The trainees will hold Ph.D. and/or M.D. degrees, and will be chosen on the basis of the quality and cancer relevance of research proposals they submit. The average duration of training will be three years, as at present. Upon completion of training the trainees will be fully qualified to conduct independent research in molecular and cellular biology related to cancer.

Public Health Relevance

The Cancer Center of the Salk Institute for Biological Studies provides a rich environment for postdoctoral research training for qualified candidates with the Ph.D. and/or M.D. degrees. Trainees are prepared for careers as independent research investigators through firsthand experience designing and performing cutting edge research in basic and translational studies in cancer biology. The Cancer Center Training Program also provides courses, seminars, tutorials and a forum for research discussions to enhance this training experience.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Lim, Susan E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Salk Institute for Biological Studies
La Jolla
United States
Zip Code
Gatchalian, Jovylyn; Malik, Shivani; Ho, Josephine et al. (2018) A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat Commun 9:5139
Eichner, Lillian J; Brun, Sonja N; Herzig, Sébastien et al. (2018) Genetic Analysis Reveals AMPK Is Required to Support Tumor Growth in Murine Kras-Dependent Lung Cancer Models. Cell Metab :
McFall, Thomas; McKnight, Brooke; Rosati, Rayna et al. (2018) Progesterone receptor A promotes invasiveness and metastasis of luminal breast cancer by suppressing regulation of critical microRNAs by estrogen. J Biol Chem 293:1163-1177
Xia, Yifeng; Zhan, Cheng; Feng, Mingxiang et al. (2018) Targeting CREB Pathway Suppresses Small Cell Lung Cancer. Mol Cancer Res 16:825-832
Katz, Zachary B; Novotná, Lucie; Blount, Amy et al. (2017) A cycle of Zap70 kinase activation and release from the TCR amplifies and disperses antigenic stimuli. Nat Immunol 18:86-95
Fuhs, Stephen Rush; Hunter, Tony (2017) pHisphorylation: the emergence of histidine phosphorylation as a reversible regulatory modification. Curr Opin Cell Biol 45:8-16
Saison-Ridinger, Maya; DelGiorno, Kathleen E; Zhang, Tejia et al. (2017) Reprogramming pancreatic stellate cells via p53 activation: A putative target for pancreatic cancer therapy. PLoS One 12:e0189051
Gibson, Matthew D; Gatchalian, Jovylyn; Slater, Andrew et al. (2017) PHF1 Tudor and N-terminal domains synergistically target partially unwrapped nucleosomes to increase DNA accessibility. Nucleic Acids Res 45:3767-3776
Tencer, Adam H; Cox, Khan L; Di, Luo et al. (2017) Covalent Modifications of Histone H3K9 Promote Binding of CHD3. Cell Rep 21:455-466
Tencer, Adam H; Gatchalian, Jovylyn; Klein, Brianna J et al. (2017) A Unique pH-Dependent Recognition of Methylated Histone H3K4 by PPS and DIDO. Structure 25:1530-1539.e3

Showing the most recent 10 out of 93 publications