The continuation of the Cancer Biology Training Program is proposed at the University of Michigan. The central goal of this program is to train exceptional junior investigators to address fundamental biological problems related to human cancer. The Cancer Biology Training Program is both multidisciplinary and interdepartmental, drawing its strength from the interdisciplinary cooperation of 41 faculty members from 15 basic science and clinical departments within The University of Michigan Medical School: Biological Chemistry, Molecular, Cellular and Developmental Biology, Dermatology, Human Genetics, Internal Medicine, Medicinal Chemistry, Microbiology &Immunology, Neurology, Otolaryngology, Pathology, Pediatrics, Pharmacology, Physiology, Radiation Oncology and Urology. The Program draws further strength from its association with The University of Michigan Comprehensive Cancer Center. The Program trains both predoctoral and postdoctoral scholars with research opportunities focusing on five specific areas of research: Cancer Genetics, Cancer Cell Biology, Molecular Therapeutics, Radiation Sciences and Molecular Imaging. Postdoctoral fellows will have completed a Ph.D. degree in one of the physical or biological sciences, or have completed an M.D. degree. Predoctoral students will comprise a subset of students already accepted into established graduate programs in Biological Chemistry, Cell and Developmental Biology, Cellular and Molecular Biology, Human Genetics, Microbiology and Immunology, Neurosciences, Pathology, Pharmacology, or Physiology. All trainees must have significant interest in pursing a career in some aspect of cancer-related research. This interdepartmental training program is dove-tailed into existing departmental programs while providing a cohesive, high quality training experience in cancer biology. Predoctoral trainees will be expected to graduate to outstanding postdoctoral positions, while postdoctoral trainees should assume leading academic and research positions.
Hartlerode, Andrea J; Regal, Joshua A; Ferguson, David O (2018) Reversible mislocalization of a disease-associated MRE11 splice variant product. Sci Rep 8:10121 |
Sanchez-Vega, Francisco; Mina, Marco; Armenia, Joshua et al. (2018) Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 173:321-337.e10 |
Schofield, Heather K; Tandon, Manuj; Park, Min-Jung et al. (2018) Pancreatic HIF2? Stabilization Leads to Chronic Pancreatitis and Predisposes to Mucinous Cystic Neoplasm. Cell Mol Gastroenterol Hepatol 5:169-185.e2 |
Hawkins, Allegra G; Basrur, Venkatesha; da Veiga Leprevost, Felipe et al. (2018) The Ewing Sarcoma Secretome and Its Response to Activation of Wnt/beta-catenin Signaling. Mol Cell Proteomics 17:901-912 |
Kamran, Neha; Alghamri, Mahmoud S; Nunez, Felipe J et al. (2018) Current state and future prospects of immunotherapy for glioma. Immunotherapy 10:317-339 |
Djuric, Zora; Bassis, Christine M; Plegue, Melissa A et al. (2018) Colonic Mucosal Bacteria Are Associated with Inter-Individual Variability in Serum Carotenoid Concentrations. J Acad Nutr Diet 118:606-616.e3 |
Kamran, Neha; Chandran, Mayuri; Lowenstein, Pedro R et al. (2018) Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy. Clin Immunol 189:34-42 |
Haase, Santiago; Garcia-Fabiani, María Belén; Carney, Stephen et al. (2018) Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opin Ther Targets 22:599-613 |
Morgan, Meredith A; Canman, Christine E (2018) Replication Stress: An Achilles' Heel of Glioma Cancer Stem-like Cells. Cancer Res 78:6713-6716 |
Thomas, Tina T; Chukkapalli, Sahiti; Van Noord, Raelene A et al. (2018) Utilization of Ultrasound Guided Tissue-directed Cellular Implantation for the Establishment of Biologically Relevant Metastatic Tumor Xenografts. J Vis Exp : |
Showing the most recent 10 out of 185 publications