The Free Radical and Radiation Biology Training Program in Radiation Oncology at the University of lowa was established to provide interdisciplinary graduate and post-graduate training with a focus on six key goals for education in preparation of trainees for careers in cancer-related fields within biomedical research and education;1) To impart a fundamental understanding of the subject matter of radiation biology, free radical biology, and cancer biology;2) To provide trainees with the opportunity to achieve proficiency in the radiation biology, free radical biology, and molecular oncology disciplines leading to successful careers in cancer research;3) To structure research experience for trainees that includes the development of a research proposal, execution of a research project, and evaluation of these results for submission in peer-reviewed publications; 4)To offer trainees experience in learning the necessary knowledge and skills to do collaborative research with faculty in clinical and basic science departments;5) To provide trainees with critical knowledge and essential skills in both oral and written scientific communication;and 6)To encourage trainees to implement innovative approaches in a """"""""real world"""""""" environment to test, using hypothesis driven research techniques, the basic mechanisms underlying radiobiological and redox biology phenomena as they relate to cancer biology with an emphasis on developing novel interventions to limit the health related impact of cancer. We are proposing to support three predoctoral and three postdoctoral trainees per year. We have an internationally recognized faculty with a consistent track record of success in radiobiology and free radical cancer biology investigator initiated research awards. We propose to have 15 mentors in the Training Program including 4 primary faculty appointees from Radiation Oncology as well as 11 secondary faculty members;4 from Internal Medicine, 2 from Anatomy and Cell Biology, and 1 each from Microbiology, Surgery, Pathology, Otolaryngology, and Occupational and Environmental Health. Educational activities for trainees includes one-on-one mentoring by faculty, cancer-related nationally recognized research projects, presenting work and receiving feedback at national meetings, 2 journal clubs/week, 1 seminar a week, 1 translational research meeting/week, and technical training in the state of-the-art core lab resources in the program. Formal graduate level coursework offered by the faculty (required for pre-docs) includes classes in radiation, free radical, and cancer biology as well as a course in medical physics with an emphasis on image guided cancer therapy. The interdisciplinary cancer related research being pursued by the faculty spans a wide spectrum from basic mechanistic studies to translational preclinical as well as clinical studies. The training program has a 50 year history of producing outstanding scientists working in cancer research and free radical biology.
There is growing evidence that redox biology and oxidative stress mediated by free radicals (as well as other reactive oxygen and nitrogen containing species) are causally involved in basic biochemical mechanisms underlying the initiation, growth, invasion, metastasis, treatment, and prevention of cancer. Free radical biology also has strong common mechanistic links to the study of radiation biology, cancer biology, inflammation, and degenerative diseases associated with aging. Interdisciplinary graduate training in Free Radical and Radiation Biology therefore meets a national need for scientists in this discipline to develop novel mechanism based approaches to reduce the health effects of cancer as well as educate the next generation of leaders in this field of basic and translational research.
Showing the most recent 10 out of 117 publications