The Free Radical and Radiation Biology Training Program in Radiation Oncology at the University of Iowa was established to provide interdisciplinary graduate and post-graduate training with a focus on six key goals for education in preparation of trainees for careers in cancer-related fields within biomedical research and education: 1)To impart a fundamental understanding of the subject matter of radiation biology, free radical biology, and cancer biology; 2) To provide trainees with the opportunity to achieve proficiency in the experimental radiation biology, free radical biology, and molecular oncology disciplines leading to successful careers in cancer research; 3) To structure research experiences for trainees that include the development of a research proposal, execution of a research project, and evaluation of scientific results for submission to peer- reviewed journals; 4) To offer trainees experiences in learning skills necessary to do collaborative research with faculty in both clinical and basic science departments to translate fundamental mechanistic knowledge in free radical and radiation biology from the bench-to-bedside; 5) To provide trainees with the critical thinking and skills necessary to effectively communicate scientific knowledge in both oral and written presentations of their research; and 6) To encourage trainees to implement innovative approaches in a real world environment to test, using hypothesis driven research techniques, the basic mechanisms underlying radiobiological and redox biology phenomena as they relate to cancer biology with an emphasis on developing novel interventions to limit the health related impact of cancer. We are proposing to support three predoctoral and three postdoctoral trainees per year. We have an internationally recognized faculty with a consistent track record of success in radiobiology and free radical cancer biology investigator initiated research awards as well as publications. We propose to have 13 well- funded and dedicated program faculty members (both junior and senior faculty ranks) that embrace a diverse body of knowledge that synergistically comprises the interdisciplinary program in Free Radical and Radiation Biology at the University of Iowa. The 13 program faculty members consist of 7 Professors, 3 Associate Professors, and 3 Assistant Professors of which 4 are from Radiation Oncology, 3 from Internal Medicine, 2 from Biochemistry, and 1 each from Pathology, Psychiatry/Neurology, Radiology, and Surgery. Educational activities for trainees includes one-on-one mentoring by faculty, cancer-related nationally recognized research projects, presenting work and receiving feedback at national meetings, 2 journal clubs/week, 1 seminar/week, 1 translational research meeting/week, and technical training in the state of-the-art core lab resources in the program. Formal graduate level coursework offered by the faculty (required for pre-docs) includes classes in radiation, free radical, and cancer biology as well as a course in medical physics with an emphasis on image guided cancer therapy. The interdisciplinary cancer related research being pursued by the faculty spans a wide spectrum from basic mechanistic studies to translational preclinical as well as clinical studies. The program has a 50+ year history of producing outstanding scientists working in cancer research and free radical biology.

Public Health Relevance

There is growing evidence that disruptions in redox biology and oxidative stress mediated by free radicals (as well as other reactive oxygen and nitrogen species) are causally involved in initiation, growth, invasion, metastasis, and treatment of cancer. Free radical biology also has strong mechanistic links to radiation biology, cancer biology, inflammation, and degenerative diseases associated with aging. Given the rapidly expanding importance of these concepts in translational biomedical research, the unique Training Program in Free Radical and Radiation Biology meets a national need for scientists to develop novel mechanism based approaches to reduce the health effects of cancer and educate the next generation of leaders in this field.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Perkins, Susan N
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Iowa
Schools of Medicine
Iowa City
United States
Zip Code
Heer, Collin D; Davis, Andrew B; Riffe, David B et al. (2018) Superoxide Dismutase Mimetic GC4419 Enhances the Oxidation of Pharmacological Ascorbate and Its Anticancer Effects in an H?O?-Dependent Manner. Antioxidants (Basel) 7:
Schoenfeld, Joshua D; Sibenaller, Zita A; Mapuskar, Kranti A et al. (2018) Redox active metals and H2O2 mediate the increased efficacy of pharmacological ascorbate in combination with gemcitabine or radiation in pre-clinical sarcoma models. Redox Biol 14:417-422
Yang, Tian; Britt, Jeremiah K; Cintrón-Pérez, Coral J et al. (2018) Ca2+-Binding Protein 1 Regulates Hippocampal-dependent Memory and Synaptic Plasticity. Neuroscience 380:90-102
Wilkes, Justin G; O'Leary, Brianne R; Du, Juan et al. (2018) Pharmacologic ascorbate (P-AscH-) suppresses hypoxia-inducible Factor-1? (HIF-1?) in pancreatic adenocarcinoma. Clin Exp Metastasis 35:37-51
Rosado-Olivieri, Edwin A; Ramos-Ortiz, Gibram A; Hernández-Pasos, Josué et al. (2017) A START-domain-containing protein is a novel marker of nervous system components of the sea cucumber Holothuria glaberrima. Comp Biochem Physiol B Biochem Mol Biol 214:57-65
Schoenfeld, Joshua D; Sibenaller, Zita A; Mapuskar, Kranti A et al. (2017) O2?- and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate. Cancer Cell 31:487-500.e8
Mapuskar, Kranti A; Flippo, Kyle H; Schoenfeld, Joshua D et al. (2017) Mitochondrial Superoxide Increases Age-Associated Susceptibility of Human Dermal Fibroblasts to Radiation and Chemotherapy. Cancer Res 77:5054-5067
Sciegienka, Sebastian J; Solst, Shane R; Falls, Kelly C et al. (2017) D-penicillamine combined with inhibitors of hydroperoxide metabolism enhances lung and breast cancer cell responses to radiation and carboplatin via H2O2-mediated oxidative stress. Free Radic Biol Med 108:354-361
Larson-Casey, Jennifer L; Deshane, Jessy S; Ryan, Alan J et al. (2016) Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis. Immunity 44:582-596
Coleman, Mitchell C; Ramakrishnan, Prem S; Brouillette, Marc J et al. (2016) Injurious Loading of Articular Cartilage Compromises Chondrocyte Respiratory Function. Arthritis Rheumatol 68:662-71

Showing the most recent 10 out of 117 publications