The objective of this program is to provide predoctoral and postdoctoral training for individuals interested in careers in translational brain tumor research. Despite the best efforts of neurosurgeons, neuro-oncologists, and laboratory-based scientists, brain cancer remains among the most deadly of all malignancies. Improvements in brain cancer therapy have come slowly, in part because of the relative dearth of individuals trained in a manner that allows them to communicate with both clinicians and lab-based investigators. This is a renewal application for years 11-15 of the T32 Training Grant in Translational Brain Tumor Research at the University of California San Francisco. The UCSF Brain Tumor Center is the largest program in the nation that focuses on developing translational brain tumor investigators of the future; individuals who can move seamlessly between clinical and laboratory worlds and in doing so can more effectively contribute to the development of new therapeutic interventions for brain tumors. We intend to build upon the training successes in the previous cycles, maintaining the number of trainees and mentors. This application requests support for a postdoctoral and predoctoral Training Program (three postdoctoral trainees, 1 predoctoral trainees). The postdoctoral trainees are selected from the labs and clinics of the faculty, and the predoc trainee is drawn from the top-tier students in the Biomedical Sciences Program. The faculty of the Program consists of 23 mentors, and a core of 19 research labs whose work has made the UCSF brain tumor community one of the most productive and recognized in the world. Over the course of the two years of support requested, the trainees work with the PIs of these labs and clinics to develop and complete meaningful and significant translational brain tumor research projects, and in the process become fluent in laboratory-based and clinical research techniques. The basic science trainees also have unique, supervised experiences in clinical neuropathology, clinical neuro-oncology, clinical trial design and a new neurosurgery experience component. At the same time trainees take part in a faculty-led didactic curriculum uniquely focused on brain tumor-related issues and which allow trainees to develop a common language with which to discuss and understand brain tumor biology, diagnostic and therapeutic modalities, and unresolved problems in the field. Additional courses and training events that encourage effective speaking and writing are included, and there is an extensive selection of existing courses to help tailor the educational experience of individual trainees. Evaluation and mentoring mechanisms are included to help ensure success in the program and in attaining future career goals. The UCSF T32 Program in Translational Brain Tumor Research has a strong track record of attracting well-qualified individuals, and in successfully preparing investigators to lead translational brain tumor research teams nationally, and internationally, and joining in the fight against brain cancer.

Public Health Relevance

Project Relevance: Adult brain cancer continues to be a significant challenge to clinicians, with over 20,000 cases diagnosed per year, and the mortality rate still among the highest of all cancers. Because the prognosis for individuals with the most common types of brain cancer remains poor, it is of critical importance that new therapies be developed. This proposal requests funds to support a training program that takes promising young investigators and trains them to understand brain tumor biology and therapy as an integrated whole. Investigators trained in this stimulating, translational and comprehensive manner will provide competent leadership for future research efforts aimed at improved treatments and outcomes for brain tumor patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
2T32CA151022-11
Application #
10023835
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Lim, Susan E
Project Start
2010-09-01
Project End
2025-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
11
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Neurosurgery
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Zhang, Chenan; Wiemels, Joseph L; Hansen, Helen M et al. (2018) Two HLA Class II Gene Variants Are Independently Associated with Pediatric Osteosarcoma Risk. Cancer Epidemiol Biomarkers Prev 27:1151-1158
Griveau, Amelie; Seano, Giorgio; Shelton, Samuel J et al. (2018) A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment. Cancer Cell 33:874-889.e7
Wood, Matthew D; Tihan, Tarik; Perry, Arie et al. (2018) Multimodal molecular analysis of astroblastoma enables reclassification of most cases into more specific molecular entities. Brain Pathol 28:192-202
Zhang, Chenan; Morimoto, Libby M; de Smith, Adam J et al. (2018) Genetic determinants of childhood and adult height associated with osteosarcoma risk. Cancer 124:3742-3752
Park, Ilwoo; Larson, Peder E Z; Gordon, Jeremy W et al. (2018) Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn Reson Med 80:864-873
Hayes, Josie; Yu, Yao; Jalbert, Llewellyn E et al. (2018) Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas. Neuro Oncol 20:632-641
Autry, Adam W; Hashizume, Rintaro; James, C David et al. (2018) Measuring Tumor Metabolism in Pediatric Diffuse Intrinsic Pontine Glioma Using Hyperpolarized Carbon-13 MR Metabolic Imaging. Contrast Media Mol Imaging 2018:3215658
Chandra, Ankush; Rick, Jonathan W; Dalle Ore, Cecilia et al. (2018) Disparities in health care determine prognosis in newly diagnosed glioblastoma. Neurosurg Focus 44:E16
Lal, Sangeet; Carrera, Diego; Phillips, Joanna J et al. (2018) An oncolytic measles virus-sensitive Group 3 medulloblastoma model in immune-competent mice. Neuro Oncol 20:1606-1615
López, G Y; Perry, A; Harding, B et al. (2018) CDKN2A/B Loss Is Associated with Anaplastic Transformation in a Case of NTRK2 Fusion-positive Pilocytic Astrocytoma. Neuropathol Appl Neurobiol :

Showing the most recent 10 out of 52 publications