A multidisciplinary predoctoral training program in biomedical imaging and spectroscopy (BMIS) is proposed. The BMIS program will provide a unique educational experience based on a solid fundamental training in the mathematical and engineering principles of image science combined with a focus on and exposure to a broad range of biological applications. This program will draw on the existing strength of faculty and research programs in biomedical imaging and spectroscopy at the University of Arizona. Areas of emphasis include magnetic resonance imaging, magnetic resonance spectroscopy, gamma-ray imaging, x-ray imaging, optical spectroscopy, optical imaging, image processing, and image quality assessment. A specialized curriculum is proposed for students during the first two years that will involve courses in applied physiology, biology, the mathematical principles of image science, as well as the physics and engineering principles at the foundation of modern imaging and spectroscopic systems. These courses will provide students with the knowledge base necessary to carry out advanced research on the development and utilization of advanced biomedical imaging and spectroscopic technologies. In addition to the course work, students enrolled in the program will be required to complete semester-long rotations in three different research laboratories prior to selecting a laboratory and mentor for their Ph.D. dissertation work. These rotations will provide students with exposure to multiple disciplines and research environments and will help create and foster increased collaboration among researchers at the University of Arizona. Students will be recruited into BMIS through existing graduate-level education programs at the University of Arizona. The primary conduits for recruiting students will be through the graduate programs in Optical Sciences, Biomedical Engineering, and Physiological Sciences, although outstanding students from other programs such as Electrical and Computer Engineering, Physics, Chemistry, Cancer Biology, and/or Biochemistry will be eligible to participate. Program funds will be used to fully support students during their first three years. Third year students will be required to serve as student mentors to individuals entering the program. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Institutional National Research Service Award (T32)
Project #
5T32EB000809-05
Application #
7227716
Study Section
Special Emphasis Panel (ZGM1-BRT-0 (01))
Program Officer
Baird, Richard A
Project Start
2003-05-01
Project End
2008-06-30
Budget Start
2007-05-01
Budget End
2008-06-30
Support Year
5
Fiscal Year
2007
Total Cost
$287,987
Indirect Cost
Name
University of Arizona
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Dawson, Peter; Romanowski, Marek (2018) Excitation Modulation of Upconversion Nanoparticles for Switch-like Control of Ultraviolet Luminescence. J Am Chem Soc 140:5714-5718
Preston, Chet; Kasoff, Willard S; Witte, Russell S (2018) Selective Mapping of Deep Brain Stimulation Lead Currents Using Acoustoelectric Imaging. Ultrasound Med Biol 44:2345-2357
Tate, Tyler H; Keenan, Molly; Black, John et al. (2017) Ultraminiature optical design for multispectral fluorescence imaging endoscopes. J Biomed Opt 22:36013
Ghanbari, Nasrin; Clarkson, Eric; Kupinski, Matthew et al. (2017) Optimization of an Adaptive SPECT System with the Scanning Linear Estimator. IEEE Trans Radiat Plasma Med Sci 1:435-443
Keenan, Molly; Tate, Tyler H; Kieu, Khanh et al. (2017) Design and characterization of a combined OCT and wide field imaging falloposcope for ovarian cancer detection. Biomed Opt Express 8:124-136
Totenhagen, John W; Bernstein, Adam; Yoshimaru, Eriko S et al. (2017) Quantitative magnetic resonance imaging of brain atrophy in a mouse model of Niemann-Pick type C disease. PLoS One 12:e0178179
Tate, Tyler H; Baggett, Brenda; Rice, Photini F S et al. (2016) Multispectral fluorescence imaging of human ovarian and fallopian tube tissue for early-stage cancer detection. J Biomed Opt 21:56005
Risi, Matthew D; Rouse, Andrew R; Chambers, Setsuko K et al. (2016) Pilot Clinical Evaluation of a Confocal Microlaparoscope for Ovarian Cancer Detection. Int J Gynecol Cancer 26:248-54
Brand, Jonathan F; Furenlid, Lars R; Altbach, Maria I et al. (2016) Task-based optimization of flip angle for fibrosis detection in T1-weighted MRI of liver. J Med Imaging (Bellingham) 3:035502
Mu, Tingkui; Chen, Zeyu; Pacheco, Shaun et al. (2016) Generation of a controllable multifocal array from a modulated azimuthally polarized beam. Opt Lett 41:261-4

Showing the most recent 10 out of 32 publications