Continuation of a multidisciplinary predoctoral training program in biomedical imaging and spectroscopy (BMIS) is proposed. The BMIS program provides a unique educational experience based on fundamental training in the mathematical and engineering principles of image science combined with a focus on and exposure to a broad range of biological applications. This program draws on the strength of the faculty and research programs in biomedical imaging and spectroscopy at the University of Arizona. Areas of emphasis include magnetic resonance imaging, magnetic resonance spectroscopy, gamma-ray imaging, X-ray imaging, ultrasound imaging, optical imaging, optical spectroscopy, image processing, and image quality assessment, which are often tied to specific scientific investigation across a wide spectrum of applications. A specialized curriculum is defined for BMIS students during the first two years, which involves courses in applied physiology, biology, the mathematical principles of image science, as well as the physics and engineering principles at the foundation of modem imaging and spectroscopic systems. These courses provide students with the knowledge base necessary to carry out advanced research on the development and utilization of advanced biomedical imaging and spectroscopic technologies. In addition to the course work, students enrolled in the program are required to complete semester-long rotations (typically three) in different research laboratories prior to selecting a laboratory and mentor for their Ph.D. dissertation work. These rotations provide students with exposure to multiple disciplines and research environments and help create and foster increased collaboration among researchers at the University of Arizona. Identity and connection to the training program are fostered through regular meetings, seminars, and community activities. Students are recruited into BMIS through existing graduate programs at the University of Arizona. The primary conduits for recruiting students are through the graduate programs in Optical Sciences, Biomedical Engineering, and Physiological Sciences. Outstanding students from other programs, such as Applied Math, Electrical and Computer Engineering, Physics, and Cancer Biology, are encouraged and eligible to apply. Program funds are used to fully support students during their first two years after which time they are supported in the research laboratory of their primary mentor.
Showing the most recent 10 out of 32 publications