This is a renewal submission of Advanced Training in Environmental Health Sciences requesting 2 years of support for each of 10 predoctoral trainees beginning after their first or second year in a PhD degree program. The objective of this predoctoral program is to train the next generation of environmental health scientists through interdisciplinary research and coursework that address issues of direct relevance to the NIEHS mission. Training faculty consist of 53 active researchers with substantial experience in mentoring predoctoral students. Areas of research focus in this training program are: (1) Cancer: (2) Endocrine and Metabolic Mechanisms of Toxicity; (3) Genotoxicity and Epigenetics: (4) Neurotoxicology; and (5) Respiratory Toxicology. Faculty interests and expertise overlap in these areas facilitating interaction among labs, which in turn promotes interdisciplinary approaches to studying the impact of environmental factors on human biology and disease. Trainees are recruited from several graduate groups that provide disciplinary training relevant to environmental health sciences: toxicology, exposure assessment, epidemiology, cell and molecular biology, neuroscience and pathophysiology. Trainees have access to advanced technologies, such as proteomics, genomics and metabolomics, state-of-the-art imaging, genetically modified mice, and inhalation facilities for rodents and non-human primates. A strength of environmental health training at UC Davis is the vertical integration of studies of environmentally-induced disease. Molecular, cellular, tissue and animal (including transgenic mouse) models complement nonhuman primate models, human clinical samples obtained through the UC Davis Clinical and Translational Science Center (CTSC) and epidemiological studies. The activities of various research centers (M.I.N.D. Institute, Center for Children's Environmental Health, Comprehensive Cancer Center, Western Center for Agricultural Health and Safety, Superfund Program and Center for Nanotechnology Health Implications Research) provide synergy and promote connections to disease prevention and public health. Trainees will receive training in responsible conduct of research and obtain instruction and practice in scientific writing (including proposals for extramural funding) and in communicating scientific findings (via chalk talks and participation in annual retreats and national meetings). Trainees wil also be exposed to emerging concepts and technologies in environmental health via participation in a trainee- organized and -managed seminar series that brings in leading environmental health scientists from across the country, and a summer course in which training faculty and trainees explore a current issue of relevance to environmental health with the goal of producing a joint review or white paper for publication. This training program builds on an established program with a strong track record of meeting the NIEHS mission to train the next generation of scientists to protect public health by connecting scientific advances to environmental exposures and consequent disease processes.

Public Health Relevance

This competitive renewal application proposes to continue the interdisciplinary training of the next generation of researchers in environmental health sciences. Trainees will be well prepared for diverse careers focused on identifying, understanding and/or mitigating the impacts of environmental factors on human health and disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Institutional National Research Service Award (T32)
Project #
4T32ES007059-39
Application #
9100727
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Shreffler, Carol A
Project Start
1978-07-01
Project End
2018-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
39
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of California Davis
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Owens, Shannon; Tang, Shangming; Hunter, Neil (2018) Monitoring Recombination During Meiosis in Budding Yeast. Methods Enzymol 601:275-307
Hampe, Alexander E; Li, Zidong; Sethi, Sunjay et al. (2018) A Microfluidic Platform to Study Astrocyte Adhesion on Nanoporous Gold Thin Films. Nanomaterials (Basel) 8:
Blöcher, René; Wagner, Karen M; Gopireddy, Raghavender R et al. (2018) Orally Available Soluble Epoxide Hydrolase/Phosphodiesterase 4 Dual Inhibitor Treats Inflammatory Pain. J Med Chem 61:3541-3550
Nuñez, Nicole N; Khuu, Cindy; Babu, C Satheesan et al. (2018) The Zinc Linchpin Motif in the DNA Repair Glycosylase MUTYH: Identifying the Zn2+ Ligands and Roles in Damage Recognition and Repair. J Am Chem Soc 140:13260-13271
Keil, Kimberly P; Miller, Galen W; Chen, Hao et al. (2018) PCB 95 promotes dendritic growth in primary rat hippocampal neurons via mTOR-dependent mechanisms. Arch Toxicol 92:3163-3173
Chen, Xiaopeng; Walter, Kyla M; Miller, Galen W et al. (2018) Simultaneous quantification of T4, T3, rT3, 3,5-T2 and 3,3'-T2 in larval zebrafish (Danio rerio) as a model to study exposure to polychlorinated biphenyls. Biomed Chromatogr 32:e4185
Sethi, Sunjay; Keil, Kimberly P; Lein, Pamela J (2018) 3,3'-Dichlorobiphenyl (PCB 11) promotes dendritic arborization in primary rat cortical neurons via a CREB-dependent mechanism. Arch Toxicol 92:3337-3345
Walter, Kyla M; Miller, Galen W; Chen, Xiaopeng et al. (2018) Effects of thyroid hormone disruption on the ontogenetic expression of thyroid hormone signaling genes in developing zebrafish (Danio rerio). Gen Comp Endocrinol :
Yousefi, Shida; Sharma, Satish K; Stojkov, Darko et al. (2018) Oxidative damage of SP-D abolishes control of eosinophil extracellular DNA trap formation. J Leukoc Biol 104:205-214
Hill 3rd, Thomas; Rice, Robert H (2018) DUOX expression in human keratinocytes and bronchial epithelial cells: Influence of vanadate. Toxicol In Vitro 46:257-264

Showing the most recent 10 out of 181 publications