The primary objective of this ongoing program is to provide intensive basic and translational science training for individuals who will become outstanding vision researchers. Training is provided in the disciplines of immunology, cell biology, molecular biology, physiology, pharmacology, genetics, developmental biology, neuroscience and biochemistry, with an emphasis on understanding the fundamental mechanisms that underlie normal ocular processes, as well as corneal, retinal and choroidal diseases, cataract, glaucoma and visual processing. The program has a multidisciplinary approach, with emphasis on collaboration between basic scientists and the various clinical disciplines and it provides the facilities and supervision for laboratory investigations relative to some of the major missions of the National Eye Institute. The program directors oversee the selection of trainees and the provision of appropriate background, technical training and ongoing research supervision by the preceptors. The trainees include: (1) Predoctoral students from the Emory University Graduate School Division of Biological and Biomedical Sciences in the Programs of Biochemistry, Cell, and Developmental Biology, Neuroscience, Nutrition and Health Science, Immunology and Molecular Pathogenesis, and Molecular and Systems Pharmacology;(2) Postdoctoral Fellows seeking advanced training with one (or more) of the preceptors in a scientific area pertinent to vision research. Each trainee selects or is assigned a preceptor with whom he or she develops a research proposal, conducts the research and participates in the ongoing research projects of the preceptor. All trainees are required to participate in the seminar, course work, grand rounds and other educational activities of the Emory Eye Center, which is the focal point for eye research and clinical care in the region. Thus, the program also serves to integrate the clinical and basic science departments. In addition, the program successfully attracts minority trainees to careers in eye research, drawing on the outstanding resources of Atlanta academic and medical institutions.

Public Health Relevance

The future of curing blinding eye disease relies on a continued supply of well-trained vision scientists goal is to produce the next generation of scientists who are well versed in the basic, clinical, and translational research approaches that will be needed to fulfill the mission of the National Eye Institute.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Institutional National Research Service Award (T32)
Project #
5T32EY007092-26
Application #
8209112
Study Section
Special Emphasis Panel (ZEY1-VSN (10))
Program Officer
Agarwal, Neeraj
Project Start
1984-09-28
Project End
2014-12-31
Budget Start
2012-01-01
Budget End
2012-12-31
Support Year
26
Fiscal Year
2012
Total Cost
$189,731
Indirect Cost
$12,563
Name
Emory University
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Dattilo, Michael; Newman, Nancy J; Biousse, Valérie (2018) Acute retinal arterial ischemia. Ann Eye Sci 3:
Julian, Joshua B; Kamps, Frederik S; Epstein, Russell A et al. (2018) Dissociable spatial memory systems revealed by typical and atypical human development. Dev Sci :e12737
Henneman, Nathaniel F; Foster, Stephanie L; Chrenek, Micah A et al. (2018) Xanthohumol Protects Morphology and Function in a Mouse Model of Retinal Degeneration. Invest Ophthalmol Vis Sci 59:45-53
Chiang, Bryce; Jung, Jae Hwan; Prausnitz, Mark R (2018) The suprachoroidal space as a route of administration to the posterior segment of the eye. Adv Drug Deliv Rev 126:58-66
Allen, Rachael S; Hanif, Adam M; Gogniat, Marissa A et al. (2018) TrkB signalling pathway mediates the protective effects of exercise in the diabetic rat retina. Eur J Neurosci 47:1254-1265
Landis, Erica G; Yang, Victoria; Brown, Dillon M et al. (2018) Dim Light Exposure and Myopia in Children. Invest Ophthalmol Vis Sci 59:4804-4811
Chien, Hsin; Alston, Christine I; Dix, Richard D (2018) Suppressor of Cytokine Signaling 1 (SOCS1) and SOCS3 Are Stimulated within the Eye during Experimental Murine Cytomegalovirus Retinitis in Mice with Retrovirus-Induced Immunosuppression. J Virol 92:
Struebing, Felix L; King, Rebecca; Li, Ying et al. (2018) Transcriptional Changes in the Mouse Retina after Ocular Blast Injury: A Role for the Immune System. J Neurotrauma 35:118-129
Alston, Christine I; Dix, Richard D (2017) Murine cytomegalovirus infection of mouse macrophages stimulates early expression of suppressor of cytokine signaling (SOCS)1 and SOCS3. PLoS One 12:e0171812
Alston, Christine I; Dix, Richard D (2017) Reduced frequency of murine cytomegalovirus retinitis in C57BL/6 mice correlates with low levels of suppressor of cytokine signaling (SOCS)1 and SOCS3 expression within the eye during corticosteroid-induced immunosuppression. Cytokine 97:38-41

Showing the most recent 10 out of 121 publications