Continued support is requested for interdisciplinary training in the vision sciences at the University of California, Davis. Training is provided by 45 vision scientists (31 preceptors and 14 associate preceptors) across 14 departments that will provide a strong foundation in one or more basic sciences. The goal of the training program is to produce vision scientists who will be capable of establishing independent research programs that will address significant problems in vision science. It will operate under the auspices of existing graduate programs at UC Davis as they offer the broad flexibility needed to achieve our training objectives. Among our 300 pre- and postdoctoral vision science trainees in the past ten years (38 of whom were partially supported by this T32), 90% are active in research through continuing training or in career positions. Among those who have completed all training, 82% are active in research and/or teaching positions at some 71 different colleges, university basic science departments and schools of medicine or veterinary medicine. The training program requests support for 4 predoctoral students (for two years each;8 slots) and 1 postdoctoral trainee (for one year) to be selected by an Advisory Committee. Internal support mechanisms and extramural grants will be used for the other years of training. The trainees will participate i one or more of five overlapping areas in which our preceptors are clustered: (1) molecular &cellular biology, retinal electrophysiology, and genetics, (2) anterior segment anatomy and physiology, (3) molecular and cellular retinal imaging, (4) systems visual neuroscience, and (5) functional imaging, computational modeling and perception. Each of the 31 preceptors has an active program of vision science research, a strong commitment to training, and extramural funding. Program resources are augmented by a strong institutional commitment, the Center for Visual Sciences and an NEI Core grant. The training program draws on the rigorous research training of the admitting programs, but also requires a one-year course that covers the broader vision sciences and clinical vision science. Graduate trainees will be supported only after their first year of graduate training and will thus be a highly selective group that has completed much of their basic science curriculum. All trainees will participate in an active colloquium series in he vision sciences, Center for Visual Sciences symposia, journal clubs and training in the ethical conduct of research. All trainees will be engaged in vision science research that will be presented at national meetings and submitted to peer-reviewed journals.

Public Health Relevance

This grant will provide support to continue high quality training grounded in basic science disciplines, and to broaden the research perspective and skills of future vision scientists. The program is designed to have a significant impact on the health and science agendas of the National Eye Institute.

National Institute of Health (NIH)
National Eye Institute (NEI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZEY1-VSN (06))
Program Officer
Agarwal, Neeraj
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
Schools of Medicine
United States
Zip Code
Mitsven, Samantha G; Cantrell, Lisa M; Luck, Steven J et al. (2018) Visual short-term memory guides infants' visual attention. Cognition 177:189-197
Miesfeld, Joel B; Moon, Myung-Soon; Riesenberg, Amy N et al. (2018) Rbpj direct regulation of Atoh7 transcription in the embryonic mouse retina. Sci Rep 8:10195
Ramamurthy, Deepa L; Krubitzer, Leah A (2018) Neural Coding of Whisker-Mediated Touch in Primary Somatosensory Cortex Is Altered Following Early Blindness. J Neurosci 38:6172-6189
Kowalchuk, Angelica M; Maurer, Kate A; Shoja-Taheri, Farnaz et al. (2018) Requirements for Neurogenin2 during mouse postnatal retinal neurogenesis. Dev Biol 442:220-235
Maurer, Kate A; Kowalchuk, Angelica; Shoja-Taheri, Farnaz et al. (2018) Integral bHLH factor regulation of cell cycle exit and RGC differentiation. Dev Dyn 247:965-975
Peinado Allina, Gabriel; Fortenbach, Christopher; Naarendorp, Franklin et al. (2017) Bright flash response recovery of mammalian rods in vivo is rate limited by RGS9. J Gen Physiol 149:443-454
Gaspelin, Nicholas; Leonard, Carly J; Luck, Steven J (2017) Suppression of overt attentional capture by salient-but-irrelevant color singletons. Atten Percept Psychophys 79:45-62
Rathbun, Daniel L; Alitto, Henry J; Warland, David K et al. (2016) Stimulus Contrast and Retinogeniculate Signal Processing. Front Neural Circuits 10:8
Ramamurthy, Deepa L; Krubitzer, Leah A (2016) The evolution of whisker-mediated somatosensation in mammals: Sensory processing in barrelless S1 cortex of a marsupial, Monodelphis domestica. J Comp Neurol 524:3587-3613
Seelke, Adele M H; Perkeybile, Allison M; Grunewald, Rebecca et al. (2016) Individual differences in cortical connections of somatosensory cortex are associated with parental rearing style in prairie voles (Microtus ochrogaster). J Comp Neurol 524:564-77

Showing the most recent 10 out of 60 publications