The goal of this proposal is to continue the UC Berkeley Molecular and Cell Biology (MCB) program of predoctoral training at the level of 50 predoctoral trainees per year, predominantly funding students in their first 2 years of graduate school. The 72 faculty associated with this training grant are field- leading scientists with ample research support and a strong commitment to mentoring. The program has a long-standing and defining principle: early and persistent emphasis on student training for an individually directed path to innovative research. The breadth of interests and interactions among the trainees and training grant faculty, combined with unique program requirements such as peer-group research presentations starting in the first year, encourage trainees to seek cross-disciplinary training opportunities. Another key tenet of the program is that the students share their knowledge by classroom teaching and participation in advanced seminar classes. One mission that the program does not have is a specific post-Ph.D. career path for the trainees: instead, the program promotes forward- thinking preparation for a well-informed choice among diverse post-Ph.D. careers. The program is strongly committed to recruiting and training students from diverse personal backgrounds. The Molecular Basis of Cell Function is the only training grant specific to, and the only training grant largely comprehensive for, the MCB graduate program. Training grant faculty research spans the 5 administrative Divisions of the Department (Biochemistry and Molecular Biology/ Cell and Developmental Biology/ Genetics, Genomics, and Development/ Immunology and Pathogenesis/ Neurobiology). The MCB graduate program has consistently ranked in the top 5 nationwide, substantiating the success of the training. Training grant faculty work through rotating assignments to enrich all components of the program: the research infrastructure, the set of broadly collaborative faculty, the adaptive training plan, and the high-caliber trainee pool with high minority representation. The program is set in a rich training environment, with groups brought together by a large number of shared activities, training opportunities, and research resources. Health Sciences Initiative funding from state and private donors enabled our increased focus on quantitative biology and biomedicaly relevant research through the training and research missions of the campus California Institute for Quantitative Biosciences and Li Ka Shing Center for Biomedical and Health Sciences. Additional focus on disease-relevant research is fostered by the Center for Emerging and Neglected Diseases, Berkeley Stem Cell Center, Cancer Research Laboratory, and Center for Computational Biology. )

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007232-38
Application #
8689057
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gindhart, Joseph G
Project Start
1977-07-01
Project End
2017-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
38
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Berkeley
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Kramer, Daniel J; Risso, Davide; Kosillo, Polina et al. (2018) Combinatorial Expression of Grp and Neurod6 Defines Dopamine Neuron Populations with Distinct Projection Patterns and Disease Vulnerability. eNeuro 5:
Gibeaux, Romain; Acker, Rachael; Kitaoka, Maiko et al. (2018) Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature 553:337-341
Samelson, Avi J; Bolin, Eric; Costello, Shawn M et al. (2018) Kinetic and structural comparison of a protein's cotranslational folding and refolding pathways. Sci Adv 4:eaas9098
Marques, Tiago; Summers, Mathew T; Fioreze, Gabriela et al. (2018) A Role for Mouse Primary Visual Cortex in Motion Perception. Curr Biol 28:1703-1713.e6
Hill, Rose Z; Hoffman, Benjamin U; Morita, Takeshi et al. (2018) The signaling lipid sphingosine 1-phosphate regulates mechanical pain. Elife 7:
Hollerer, Ina; Higdon, Andrea; Brar, Gloria A (2018) Strategies and Challenges in Identifying Function for Thousands of sORF-Encoded Peptides in Meiosis. Proteomics 18:e1700274
Janke, Ryan; King, Grant A; Kupiec, Martin et al. (2018) Pivotal roles of PCNA loading and unloading in heterochromatin function. Proc Natl Acad Sci U S A 115:E2030-E2039
Lee, Jen-Yi; Kitaoka, Maiko (2018) A beginner's guide to rigor and reproducibility in fluorescence imaging experiments. Mol Biol Cell 29:1519-1525
Gibeaux, Romain; Miller, Kelly; Acker, Rachael et al. (2018) Xenopus Hybrids Provide Insight Into Cell and Organism Size Control. Front Physiol 9:1758
Lawson, Michael R; Ma, Wen; Bellecourt, Michael J et al. (2018) Mechanism for the Regulated Control of Bacterial Transcription Termination by a Universal Adaptor Protein. Mol Cell 71:911-922.e4

Showing the most recent 10 out of 257 publications