The Molecular Basis of Cell Function (MCF) program addresses the need to provide truly multidisciplinary PhD training in the field of molecular and cell biology at UC Berkeley. Indeed, MCF is the only training program at Berkeley that encourages students to think broadly and explore across the spectrum of sub-disciplines within the field. Accordingly, MCF?s 82 training faculty are recognized scientific leaders, drawn from all five divisions within the Department of Molecular and Cell Biology (MCB): Biochemistry, Biophysics & Structural Biology; Cell & Developmental Biology; Genetics, Genomics, & Development; Immunology & Pathogenesis; and Neurobiology. Their research spans biological scales from molecules to complex systems to whole organisms. This proposal requests support for 40 MCB trainees annually in their first and second years of PhD training. The guiding philosophy of the MCB/MCF program is to provide early and persistent emphasis on student training for a flexible and individually-directed path to innovative research. We provide rigorous cross- disciplinary training, with an emphasis on imparting conceptual knowledge, promoting imaginative and critical thinking, applying new and quantitative approaches, mastering experimental logic and methods, appropriately analyzing and interpreting results, and communicating findings clearly and fluently. To advance multidisciplinary training, we facilitate extensive interactions and collaborations among students and faculty within and across divisions. All students in MCF and MCB programs will receive the same training in Years 1-2 of their PhD, including: a core Fundamentals of Molecular and Cell Biology course; advanced elective coursework in specific subfields; modular courses in quantitative approaches; immersive rotations in three different research areas; rigorous thesis research; student-led seminars; and a new course, Responsible Conduct, Rigor and Reproducibility in Research. A suite of professional development programs provide hands- on training in science communication, teaching, mentoring, teamwork, management, and leadership. Seminar series, symposia, and annual retreats also provide rich exposure to current research. All trainees receive extensive scientific and career advising and mentoring. Improvements to the program are guided by close monitoring of student progress as well as data-driven evaluation of program effectiveness and outcomes. This application builds on, updates, and improves our many years of NIH-sponsored MCF Training Program support. We have a strong track record in recruiting and graduating PhD students from diverse backgrounds. Our students conduct innovative research, publish in top journals, and go on to leadership roles in academia, industry, government, law, education, science communication, and many other fields. Innovative new training elements proposed in this renewal application will further prepare our students to tackle present and future biomedical, scientific, and societal challenges.

Public Health Relevance

The Molecular Basis of Cell Function Training Program at the University of California, Berkeley strives to provide early and persistent emphasis in multidisciplinary research training and professional skills development, thereby expanding the intellectual horizons and career options for a large pool of graduate students who are poised to lead discovery and innovation within the US biomedical workforce. Our program combines a common fundamentals course and advanced elective coursework, rigorous research training, as well as communication and professional skills development. Our goal is to fuel advances in biomedical research and training to solve present and future medical, scientific and societal challenges.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007232-43
Application #
9985111
Study Section
NIGMS Initial Review Group (TWD)
Program Officer
Salazar, Desiree Lynn
Project Start
1977-07-01
Project End
2023-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
43
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California Berkeley
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94710
Hsu, Joy; Hodgins, Jonathan J; Marathe, Malvika et al. (2018) Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest 128:4654-4668
Benthall, Katelyn N; Ong, Stacie L; Bateup, Helen S (2018) Corticostriatal Transmission Is Selectively Enhanced in Striatonigral Neurons with Postnatal Loss of Tsc1. Cell Rep 23:3197-3208
Tambe, Akshay; East-Seletsky, Alexandra; Knott, Gavin J et al. (2018) RNA Binding and HEPN-Nuclease Activation Are Decoupled in CRISPR-Cas13a. Cell Rep 24:1025-1036
Van Dis, Erik; Sogi, Kimberly M; Rae, Chris S et al. (2018) STING-Activating Adjuvants Elicit a Th17 Immune Response and Protect against Mycobacterium tuberculosis Infection. Cell Rep 23:1435-1447
Cheng, Ze; Otto, George Maxwell; Powers, Emily Nicole et al. (2018) Pervasive, Coordinated Protein-Level Changes Driven by Transcript Isoform Switching during Meiosis. Cell 172:910-923.e16
Gardner, Brooke M; Castanzo, Dominic T; Chowdhury, Saikat et al. (2018) The peroxisomal AAA-ATPase Pex1/Pex6 unfolds substrates by processive threading. Nat Commun 9:135
Zhang, Rui; LaFrance, Benjamin; Nogales, Eva (2018) Separating the effects of nucleotide and EB binding on microtubule structure. Proc Natl Acad Sci U S A 115:E6191-E6200
Kramer, Daniel J; Risso, Davide; Kosillo, Polina et al. (2018) Combinatorial Expression of Grp and Neurod6 Defines Dopamine Neuron Populations with Distinct Projection Patterns and Disease Vulnerability. eNeuro 5:
Gibeaux, Romain; Acker, Rachael; Kitaoka, Maiko et al. (2018) Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature 553:337-341
Samelson, Avi J; Bolin, Eric; Costello, Shawn M et al. (2018) Kinetic and structural comparison of a protein's cotranslational folding and refolding pathways. Sci Adv 4:eaas9098

Showing the most recent 10 out of 257 publications