Continued support is requested for five predoctoral trainees per year for five years for an interdepartmental training program in the molecular genetics of basic cell functions. The emphasis is on rigorous training using the power of genetic analysis to study basic cell processes, such as chromosome replication and segregation, regulation of gene expression, cellular differentiation, and host-parasite interactions. This training program has strongly benefited from continuous support from NIGMS since 1975. Supported students are almost exclusively in their first year, allowing them to have a broad exposure to the role of genetics as a science in itself and as a tool for solving important biological problems. The training faculty, from the Departments of Molecular Biology and Microbiology, Biochemistry, Pathology, and Medicine, is highly interactive and dedicated to close, joint supervision and mentoring of graduate students. Past trainees include leading researchers in academia and industry. The training program is administered by the Graduate Program in Molecular Microbiology. Starting with a pool of 80-115 applicants, the graduate program annually admits 5-7 new students, most or all of whom are eligible for training grant support. The program has been successful in attracting a significant number of students from underrepresented groups (including 8 of the 32 current students), nearly all of whom have been supported by this training grant. Nearly all graduates of the program have obtained high-quality postdoctoral appointments and are still active as researchers, as teachers, or in allied fields. Entering students take required courses in Genetics, Biochemistry and Microbiology and pursue 9-week rotation projects in four different laboratories. At the end of the first academic year, the choose a thesis supervisor and begin thesis research. In the second and third years, the students complete their coursework and prepare a research proposal (unrelated to the thesis topic) as a qualifying examination. All students are required to complete a seminar course in scientific ethics.

Public Health Relevance

The power of genetics to define gene function, to pinpoint the roles of proteins and their individual amino acids, and to predict susceptibility to disease lies a the heart of modern biomedical science. The training offered by our program prepares young scientists to take full advantage of genetic approaches to solve difficult, but important problems in medical research.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
2T32GM007310-36
Application #
8213318
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Haynes, Susan R
Project Start
1975-07-01
Project End
2015-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
36
Fiscal Year
2012
Total Cost
$201,881
Indirect Cost
$10,613
Name
Tufts University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
039318308
City
Boston
State
MA
Country
United States
Zip Code
02111
Severin, Geoffrey B; Ramliden, Miriam S; Hawver, Lisa A et al. (2018) Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. Proc Natl Acad Sci U S A 115:E6048-E6055
Rothstein, David M; Lazinski, David; Osburne, Marcia S et al. (2017) A Mutation in the Bacillus subtilis rsbU Gene That Limits RNA Synthesis during Sporulation. J Bacteriol 199:
Kotewicz, Kristin M; Ramabhadran, Vinay; Sjoblom, Nicole et al. (2017) A Single Legionella Effector Catalyzes a Multistep Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication. Cell Host Microbe 21:169-181
de Jesús-Díaz, Dennise A; Murphy, Connor; Sol, Asaf et al. (2017) Host Cell S Phase Restricts Legionella pneumophila Intracellular Replication by Destabilizing the Membrane-Bound Replication Compartment. MBio 8:
Green, Erin R; Clark, Stacie; Crimmins, Gregory T et al. (2016) Fis Is Essential for Yersinia pseudotuberculosis Virulence and Protects against Reactive Oxygen Species Produced by Phagocytic Cells during Infection. PLoS Pathog 12:e1005898
Flowers, Laurice J; Bou Ghanem, Elsa N; Leong, John M (2016) Synchronous Disease Kinetics in a Murine Model for EnterohemorrhagicE. coliInfection Using Food-Borne Inoculation. Front Cell Infect Microbiol 6:138
Hempstead, Andrew D; Isberg, Ralph R (2015) Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response. Proc Natl Acad Sci U S A 112:E6790-7
Klein, Brian A; Tenorio, Elizabeth L; Lazinski, David W et al. (2012) Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC Genomics 13:578
Meehan, Brian M; Malamy, Michael H (2012) Fumarate reductase is a major contributor to the generation of reactive oxygen species in the anaerobe Bacteroides fragilis. Microbiology 158:539-46
Hira, Kirthi G; Mackay, Melanie R; Hempstead, Andrew D et al. (2011) Genetic diversity of Cryptosporidium spp. from Bangladeshi children. J Clin Microbiol 49:2307-10

Showing the most recent 10 out of 23 publications