This application is for the Competing Renewal of an Institutional NRSA for combined MD and PhD training in the Medical Scientist Training Program (MSTP) at Harvard Medical School (HMS) and the Massachusetts Institute of Technology (MIT). The purpose of this training program is to meet an overwhelming need for physician scientists who will lead the translation of new research discoveries into improvements in human health. The program offers an integrated course of study combining medical education at HMS with graduate study at Harvard or MIT. For medical education, HMS offers a choice of two different programs leading to the MD degree: a problem-solving, case-based approach to learning that incorporates patient exposure and case scenarios from the onset of medical school (New Pathway), or a curriculum that emphasizes quantitative analysis and technology taught jointly with MIT (Health Sciences and Technology). For graduate study, the scope of scientific training in the program ranges from the basic sciences to translational research and bioengineering to the social sciences. The medical and scientific training components are integrated throughout the program, beginning with a course in the Molecular Biology of Human Disease and a laboratory research rotation that are taken by all MSTP students during the summer before the first academic year. The resources available to meet this mission are outstanding, including facilities and faculty from 10 pre-clinical departments at HMS, HMS-appointed faculty in both preclinical and clinical departments at seven different Harvard-affiliated teaching hospitals and institutes, and the many academic departments in the basic and social sciences at the main campuses of Harvard University and MIT in Cambridge. Students are provided guidance from before matriculation through to the end of their training by advisors with specific expertise in their area of research interest. Multiple MD-PhD-specific curricular activities foster strong relationships among each cohort and across multiple cohorts of students. 169 faculty members participate directly in the program through service on program committees and/or participation as MD-PhD student thesis advisors. The trainees are exceptionally qualified and diverse. Although not all MD-PhD students are awarded funding at the time of matriculation, the program is designed to include all students at Harvard Medical School who choose to simultaneously pursue the MD and PhD degrees, offering all program activities and mentoring support to 155 current MD-PhD students whether MSTP-funded or not. MSTP funds leverage considerable support from other training grants, individual NIH investigator awards, individual student fellowships, departmental funds, hospital funds and unrestricted institutional funds.

Public Health Relevance

The purpose of this training program is to meet an overwhelming need for physician scientists who will lead the translation of new research discoveries into improvements in human health. The program offers students the largest collection of academic laboratories in the world for research training, complemented by teaching hospitals in position to rapidly translate basic discoveries into new clinical applications. Upon completion of the training program, graduates will be poised to become future leaders in biomedical discovery, in the development of next generation diagnostic tools and therapeutics, and in shaping strategies for maximizing the clinical impact of these new discoveries.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
4T32GM007753-38
Application #
9100753
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Preusch, Peter
Project Start
1979-07-01
Project End
2017-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
38
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Harvard Medical School
Department
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
Bhan, Irun; Mosesso, Kelly; Goyal, Lipika et al. (2018) Detection and Analysis of Circulating Epithelial Cells in Liquid Biopsies From Patients With Liver Disease. Gastroenterology 155:2016-2018.e11
Sievers, Quinlan L; Gasser, Jessica A; Cowley, Glenn S et al. (2018) Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4CRBN activity. Blood 132:1293-1303
Rodin, Rachel E; Walsh, Christopher A (2018) Somatic Mutation in Pediatric Neurological Diseases. Pediatr Neurol 87:20-22
Sievers, Quinlan L; Petzold, Georg; Bunker, Richard D et al. (2018) Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362:
Rodan, Lance H; Hauptman, Marissa; D'Gama, Alissa M et al. (2018) Novel founder intronic variant in SLC39A14 in two families causing Manganism and potential treatment strategies. Mol Genet Metab 124:161-167
Gusev, Alexander; Mancuso, Nicholas; Won, Hyejung et al. (2018) Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet 50:538-548
Lodato, Michael A; Rodin, Rachel E; Bohrson, Craig L et al. (2018) Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359:555-559
Short, Francesca L; Akusobi, Chidiebere; Broadhurst, William R et al. (2018) The bacterial Type III toxin-antitoxin system, ToxIN, is a dynamic protein-RNA complex with stability-dependent antiviral abortive infection activity. Sci Rep 8:1013
Miyamoto, David T; Lee, Richard J; Kalinich, Mark et al. (2018) An RNA-Based Digital Circulating Tumor Cell Signature Is Predictive of Drug Response and Early Dissemination in Prostate Cancer. Cancer Discov 8:288-303
Kalinich, Mark; Haber, Daniel A (2018) Cancer detection: Seeking signals in blood. Science 359:866-867

Showing the most recent 10 out of 867 publications