The goal of the Harvard/MIT MD-PhD Program is to provide our students with a world-class educational experience that embraces an integration of compassionate medical care and breakthrough research to drive biomedical discovery and translation. We are laser-focused on creating an intellectually dynamic and nurturing community that enables our students to flourish, both personally and professionally, throughout their award period. This year?s Harvard Medical School curriculum revision has provided the MD-PhD program with an unprecedented opportunity to optimize the integration of MD and PhD education for our students, who benefit from two tracks, namely Pathways and Health, Sciences, and Technology (HST). Pathways features a large and diverse class whose backgrounds run the gamut of liberal arts education. The Pathways curriculum now starts with a 14 month intensive introduction to the essentials of medical education with prompt entry to the wards by October of Year 2. The HST program has a smaller class that emphasizes the science behind the medicine, focusing on mechanism, quantitation, and innovation. HST class work runs through March of Year 2, followed by the transition to the wards. Thus, all MD-PhD students now experience clinical responsibility prior to initiating their PhD studies, providing clinical insight that can influence their research direction and catalyze early career planning. This upfront clinical credit affords a new level of scheduling flexibility for re-entry to Year 3 of medical school after PhD completion, which should benefit the overall time-to-degrees. Our students have limitless options for PhD training in the basic, engineering, and social sciences across the campuses of Harvard Medical School, MIT, and all affiliated Boston hospitals and research institutes. Upon return from graduate school, the hospital experiences of Pathways and HST students are balanced with educational components that emphasize an intimate linkage between pathophysiology and patient relevance. Importantly, the MD-PhD program faculty and staff provide the academic, social, and administrative glue that brings our robust community of 181 students together. Led by Faculty Director, Loren Walensky, MD, PhD, and Administrative Director, Amy Cohen, our program is composed of key organizational components including a Board of Overseers, Faculty Leadership Council, Subcommittees on Academic Advising, Admissions, and Social Sciences, a Student Steering Committee, and Program Office Staff. Academic paracurricular offerings include our summer zero course, noon clinical case conferences, MD-PhD grand grounds, a clinical preceptorship program, transition bootcamps, meet- the-investigator series, and alumni career development mixers. To provide for a rich social environment, we also offer a summer barbecue, weekend long retreat on Cape Cod, a big sib program, ?dinners for 8?, MD-PhD breakfasts and happy hours, and a series of special events at faculty member homes. Under new leadership since 2013, the MD-PhD program has implemented a battery of programmatic changes designed to maximize the educational impact of MD-PhD training at Harvard and MIT.

Public Health Relevance

The mission of the MD-PhD Program at Harvard and MIT is to train the next-generation of physician-scientist leaders who will intertwine premier clinical care and leading edge scientific investigation to deliver on the promise of new biomedical solutions to alleviate human suffering. By harnessing the academic, clinical, and research environments of Harvard Medical School, the Massachusetts Institute of Technology, and all affiliated Boston hospitals and research institutes, we aim to provide our students with unparalleled depth and breadth of clinical and research educational opportunities balanced by a profoundly caring and invested community of student colleagues and faculty mentors. Under new leadership since 2013, the program has undergone a comprehensive review of operations to both reinforce what works and institute a battery of educational, social, and administrative changes to make the Harvard/MIT training experience that much better, now and into the future.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NIGMS Initial Review Group (TWD)
Program Officer
Gindhart, Joseph G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard Medical School
Schools of Medicine
United States
Zip Code
Grossman, Sharon R; Engreitz, Jesse; Ray, John P et al. (2018) Positional specificity of different transcription factor classes within enhancers. Proc Natl Acad Sci U S A 115:E7222-E7230
Olson, Calla M; Jiang, Baishan; Erb, Michael A et al. (2018) Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol 14:163-170
Cox, Andrew G; Tsomides, Allison; Yimlamai, Dean et al. (2018) Yap regulates glucose utilization and sustains nucleotide synthesis to enable organ growth. EMBO J 37:
Reshef, Yakir A; Finucane, Hilary K; Kelley, David R et al. (2018) Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk. Nat Genet 50:1483-1493
Starkweather, Clara Kwon; Gershman, Samuel J; Uchida, Naoshige (2018) The Medial Prefrontal Cortex Shapes Dopamine Reward Prediction Errors under State Uncertainty. Neuron 98:616-629.e6
Stolte, Björn; Iniguez, Amanda Balboni; Dharia, Neekesh V et al. (2018) Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in TP53 wild-type Ewing sarcoma. J Exp Med 215:2137-2155
Hrvatin, Sinisa; Hochbaum, Daniel R; Nagy, M Aurel et al. (2018) Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat Neurosci 21:120-129
Moynihan, Kelly D; Holden, Rebecca L; Mehta, Naveen K et al. (2018) Enhancement of Peptide Vaccine Immunogenicity by Increasing Lymphatic Drainage and Boosting Serum Stability. Cancer Immunol Res 6:1025-1038
Ching, Travers; Himmelstein, Daniel S; Beaulieu-Jones, Brett K et al. (2018) Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface 15:
Dosumu-Johnson, Ryan T; Cocoran, Andrea E; Chang, YoonJeung et al. (2018) Acute perturbation of Pet1-neuron activity in neonatal mice impairs cardiorespiratory homeostatic recovery. Elife 7:

Showing the most recent 10 out of 867 publications