The aim of this predoctoral training program is to train scientists to conduct research and prepare for careers in modern molecular genetics and allied areas. Graduates of our program receive a multi-faceted training in genetics and biochemistry and are well equipped to tackle problems relevant to a broad range of diseases. The program has two broad intellectual facets centered on molecular genetics: the first is understanding the fundamentals of genetics itself (recombination, mutation, gene expression, etc.); the second is understanding how the tools of genetics (isolation of mutants, construction of gene maps, etc.) are used to address problems. These two goals are accomplished through coursework, an extensive seminar program, and research. The features of our training program that are especially attractive to prospective students are the following: (a) a wide choice of laboratories for thesis research, (b) a laboratory rotation system, (c) an excellent set of courses, (d) a tutorial in how to present a seminar, (e) a highly cooperative spirit at UCSF, and (f) an awareness that graduate training is important to the faculty at UCSF.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007810-19
Application #
2654776
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Project Start
1979-07-01
Project End
2001-06-30
Budget Start
1998-07-01
Budget End
1999-06-30
Support Year
19
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
Schools of Medicine
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Zurita Rendón, Olga; Fredrickson, Eric K; Howard, Conor J et al. (2018) Vms1p is a release factor for the ribosome-associated quality control complex. Nat Commun 9:2197
Lin, Athena; Makushok, Tatyana; Diaz, Ulises et al. (2018) Methods for the Study of Regeneration in Stentor. J Vis Exp :
Leon, Lina M; Mendoza, Senén D; Bondy-Denomy, Joseph (2018) How bacteria control the CRISPR-Cas arsenal. Curr Opin Microbiol 42:87-95
Sorrells, Trevor R; Johnson, Amanda N; Howard, Conor J et al. (2018) Intrinsic cooperativity potentiates parallel cis-regulatory evolution. Elife 7:
Eichel, Kelsie; von Zastrow, Mark (2018) Subcellular Organization of GPCR Signaling. Trends Pharmacol Sci 39:200-208
Laurie, Matthew T; White, Corin V; Retallack, Hanna et al. (2018) Functional Assessment of 2,177 U.S. and International Drugs Identifies the Quinoline Nitroxoline as a Potent Amoebicidal Agent against the Pathogen Balamuthia mandrillaris. MBio 9:
Faust, Tyler B; Li, Yang; Bacon, Curtis W et al. (2018) The HIV-1 Tat protein recruits a ubiquitin ligase to reorganize the 7SK snRNP for transcriptional activation. Elife 7:
Zhou, Coral Y; Johnson, Stephanie L; Lee, Laura J et al. (2018) The Yeast INO80 Complex Operates as a Tunable DNA Length-Sensitive Switch to Regulate Nucleosome Sliding. Mol Cell 69:677-688.e9
Hrit, Joel; Goodrich, Leeanne; Li, Cheng et al. (2018) OGT binds a conserved C-terminal domain of TET1 to regulate TET1 activity and function in development. Elife 7:
Genuth, Miriam A; Allen, Christopher D C; Mikawa, Takashi et al. (2018) Chick cranial neural crest cells use progressive polarity refinement, not contact inhibition of locomotion, to guide their migration. Dev Biol :

Showing the most recent 10 out of 102 publications