The objectives and rationale of the Molecular Biophysics (MB) Training Grant are to prepare highly qualified students, with outstanding quantitative and computational skills, to become a creative workforce to lead the basic biomedical research enterprise. The primary focus is on molecular biophysics, spectroscopy and imaging, computational biology and bioinformatics, areas that are major drivers of advances in biological and medical research, and in technology. The program design gives students full access to the diverse research of participating faculty in seven different degree programs (Biochemistry, Biophysics &Computational Biology, Cell &Developmental Biology, Chemistry, Chemical &Biomolecular Engineering, Molecular &Integrative Physiology, and Physics), while providing them with the supportive atmosphere of their own community. Trainees can choose their research advisor from any of the 30 faculty trainers, regardless of department or degree program. Significant features of the training program include hands-on research rotations through at least three faculty labs prior to choosing an advisor, monthly meetings with research presentations, a select curriculum including a course in cell biology specifically designed for students from a physical sciences background and a course on research ethics, and career advising, provided jointly with the Cell &Molecular Biology (CMB) and Chemistry-Biology Interface (CBl) training grants. Ten traineeship stipends are requested, generally to be provided in years 2-3. All trainees will have funds to attend professional meetings, and additional opportunities to assist in recruiting of underrepresented minorities at national student conferences. During their doctoral training (5-6 years on average), most trainees serve on the organizational committee for the Annual MB/CMB Training Grant Symposium. This is entirely run by trainees and is an important organizational experience for the committee members. The Symposium serves the whole campus community of interested students and faculty, providing a professional forum for students to present their research. Trainees also have personal contact with and responsibility for a world-renowned scientist (the keynote speaker) each year.

Public Health Relevance

Quantitative skills in biology have become especially important in the molecular, cell and systems approaches underlying biomedical research. This has created a great opportunity for capturing the imagination and interest of students already well trained in quantitative methods in the physical sciences. The Molecular Biophysics Training Program at Illinois is especially well positioned to serve these students, the future leaders in quantitative biology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008276-25
Application #
8500323
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Flicker, Paula F
Project Start
1988-09-30
Project End
2014-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
25
Fiscal Year
2013
Total Cost
$338,897
Indirect Cost
$19,103
Name
University of Illinois Urbana-Champaign
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Mahinthichaichan, Paween; Morris, Dylan M; Wang, Yi et al. (2018) Selective Permeability of Carboxysome Shell Pores to Anionic Molecules. J Phys Chem B 122:9110-9118
Mahinthichaichan, Paween; Gennis, Robert B; Tajkhorshid, Emad (2018) Cytochrome aa3 Oxygen Reductase Utilizes the Tunnel Observed in the Crystal Structures To Deliver O2 for Catalysis. Biochemistry 57:2150-2161
Mahinthichaichan, Paween; Gennis, Robert B; Tajkhorshid, Emad (2018) Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates. Biochim Biophys Acta Bioenerg 1859:712-724
Barclay, Alexander M; Dhavale, Dhruva D; Courtney, Joseph M et al. (2018) Resonance assignments of an ?-synuclein fibril prepared in Tris buffer at moderate ionic strength. Biomol NMR Assign 12:195-199
Reed, Julian H; Shi, Yelu; Zhu, Qianhong et al. (2017) Manganese and Cobalt in the Nonheme-Metal-Binding Site of a Biosynthetic Model of Heme-Copper Oxidase Superfamily Confer Oxidase Activity through Redox-Inactive Mechanism. J Am Chem Soc 139:12209-12218
Mahinthichaichan, Paween; Gennis, Robert B; Tajkhorshid, Emad (2016) All the O2 Consumed by Thermus thermophilus Cytochrome ba3 Is Delivered to the Active Site through a Long, Open Hydrophobic Tunnel with Entrances within the Lipid Bilayer. Biochemistry 55:1265-78
Desai, Janish; Liu, Yi-Liang; Wei, Hongli et al. (2016) Structure, Function, and Inhibition of Staphylococcus aureus Heptaprenyl Diphosphate Synthase. ChemMedChem 11:1915-23
Tuttle, Marcus D; Comellas, Gemma; Nieuwkoop, Andrew J et al. (2016) Solid-state NMR structure of a pathogenic fibril of full-length human ?-synuclein. Nat Struct Mol Biol 23:409-15
Tuttle, Marcus D; Courtney, Joseph M; Barclay, Alexander M et al. (2016) Preparation of Amyloid Fibrils for Magic-Angle Spinning Solid-State NMR Spectroscopy. Methods Mol Biol 1345:173-83
Sun, Chang; Taguchi, Alexander T; Vermaas, Josh V et al. (2016) Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo3 from Escherichia coli. Biochemistry 55:5714-5725

Showing the most recent 10 out of 82 publications