The Molecular Biophysics Program at Stanford provides predoctoral graduate training in biophysics for students with unusually strong backgrounds in the physical sciences, mathematics and engineering. This emphasis grows out of a recognition that students trained in quantitative sciences can make very significant contributions to biomedical research, especially structural biology. Trainees must present outstanding undergraduate performance and experience in their major field and are selected on the basis of academic excellence and promise as researchers. The Ph.D. requirements include graduate level courses, participation in seminars, and the development of a high level of proficiency in research. Only students admitted to and fulfilling the requirements of the Biophysics Program are supported by the current training grant, and these students leave Stanford with a Ph.D. degree in Biophysics. Trainees are encouraged to become proficient in a variety of research techniques and to seek assistance from different sources as they develop their research expertise. The common goal in the graduate experience of all our trainers is that they be exceptionally well prepared and motivated for productive careers in biomedical research. The record of achievement by former trainees attests to the success of the Program. One of the strengths of the Program is the multi-disciplinary advising of trainees by specialists in different Departments and Schools. The Program draws on a core of faculty from 13 basic science Departments in the Schools of Humanities and Science and Medicine. These faculty have an excellent record of training and research. Outstanding facilities are available within research groups, as well as at major facilities for computational biophysics and graphics, applications of synchrotron radiation to biomolecular structure, x-ray crystallography, nmr and laser spectroscopy. By bringing an interdisciplinary group of students to the University, the Program brings a new and talented group of students into the biomedical sciences to participate in research with these faculty.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008294-12
Application #
6150865
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Flicker, Paula F
Project Start
1989-07-01
Project End
2002-06-30
Budget Start
2000-07-01
Budget End
2001-06-30
Support Year
12
Fiscal Year
2000
Total Cost
$297,304
Indirect Cost
Name
Stanford University
Department
Biology
Type
Schools of Medicine
DUNS #
800771545
City
Stanford
State
CA
Country
United States
Zip Code
94305
Knapp, Benjamin D; Huang, Kerwyn Casey (2018) Translating the Physical Code of Life. Cell 174:253-255
Yang, Dian; Denny, Sarah K; Greenside, Peyton G et al. (2018) Intertumoral Heterogeneity in SCLC Is Influenced by the Cell Type of Origin. Cancer Discov 8:1316-1331
Eichel, Kelsie; JulliƩ, Damien; Barsi-Rhyne, Benjamin et al. (2018) Catalytic activation of ?-arrestin by GPCRs. Nature 557:381-386
Larsen, Kevin P; Mathiharan, Yamuna Kalyani; Kappel, Kalli et al. (2018) Architecture of an HIV-1 reverse transcriptase initiation complex. Nature 557:118-122
Van Eps, Ned; Altenbach, Christian; Caro, Lydia N et al. (2018) Gi- and Gs-coupled GPCRs show different modes of G-protein binding. Proc Natl Acad Sci U S A 115:2383-2388
Vian, Laura; P?kowska, Aleksandra; Rao, Suhas S P et al. (2018) The Energetics and Physiological Impact of Cohesin Extrusion. Cell 173:1165-1178.e20
Coey, Aaron T; Larsen, Kevin P; Choi, Junhong et al. (2018) Dynamic Interplay of RNA and Protein in the Human Immunodeficiency Virus-1 Reverse Transcription Initiation Complex. J Mol Biol 430:5137-5150
Su, Tianying; Stanley, Geoff; Sinha, Rahul et al. (2018) Single-cell analysis of early progenitor cells that build coronary arteries. Nature 559:356-362
Denny, Sarah Knight; Bisaria, Namita; Yesselman, Joseph David et al. (2018) High-Throughput Investigation of Diverse Junction Elements in RNA Tertiary Folding. Cell 174:377-390.e20
Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y et al. (2018) 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat Commun 9:123

Showing the most recent 10 out of 152 publications