The Stanford Biophysics Program is an interdisciplinary, interdepartmental predoctoral training program for students with strong backgrounds and interests in the physical sciences and their application to biology. The program draws on faculties of 16 departments in the Schools of Humanities and Sciences, Medicine, Engineering and the Stanford Synchrotron Radiation Laboratory. The program features student training and research in the application of physical and chemical principles and methods to solving biological problems, and the development of new methods. The philosophy of the training program is to develop students with strong quantitative approaches to biological problems, while also developing their perspective in choosing forefront biological problems. There are approximately 30 trainees in the program, most with undergraduate backgrounds in physical science, biochemistry, or engineering. A balanced academic program tailored to the diverse backgrounds of the students and an acceptable level of performance is insured by first year advising by the Program Director, and then annual meetings with the thesis committee. The program requires graduate-level course work in physical and biological sciences, participation in seminar series, and most importantly the development of a high level of proficiency in independent research. The major areas of modern biophysics are represented in the program, principally in the molecular basis of macromolecular function including structural biology, single molecule analysis, and computational biology. The quantitative relationship between molecular properties and higher-level cell and tissue properties, and research in emerging areas of quantitative cell and organ biology, are also well represented. Methodologies include imaging at all biological scales: single-molecule analysis; x-ray diffraction, electron microscopy, NMR and other spectroscopic methods for determining three-dimensional structure; and cellular and tissue-level MRI. Computational biophysics is also strongly represented. Outstanding facilities are available within research groups, as well as major facilities including synchrotron radiation, NMR, and laser spectroscopy.
Coey, Aaron T; Larsen, Kevin P; Choi, Junhong et al. (2018) Dynamic Interplay of RNA and Protein in the Human Immunodeficiency Virus-1 Reverse Transcription Initiation Complex. J Mol Biol 430:5137-5150 |
Su, Tianying; Stanley, Geoff; Sinha, Rahul et al. (2018) Single-cell analysis of early progenitor cells that build coronary arteries. Nature 559:356-362 |
Denny, Sarah Knight; Bisaria, Namita; Yesselman, Joseph David et al. (2018) High-Throughput Investigation of Diverse Junction Elements in RNA Tertiary Folding. Cell 174:377-390.e20 |
Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y et al. (2018) 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat Commun 9:123 |
Watkins, Andrew M; Geniesse, Caleb; Kladwang, Wipapat et al. (2018) Blind prediction of noncanonical RNA structure at atomic accuracy. Sci Adv 4:eaar5316 |
Koehl, Antoine; Hu, Hongli; Maeda, Shoji et al. (2018) Structure of the ยต-opioid receptor-Gi protein complex. Nature 558:547-552 |
Ivanov, Ivan E; Lebel, Paul; Oberstrass, Florian C et al. (2018) Multimodal Measurements of Single-Molecule Dynamics Using FluoRBT. Biophys J 114:278-282 |
Li, Yilei; Winetraub, Yonatan; Liba, Orly et al. (2018) Optimization of the trade-off between speckle reduction and axial resolution in frequency compounding. IEEE Trans Med Imaging : |
Fan, Chao; Fan, Minrui; Orlando, Benjamin J et al. (2018) X-ray and cryo-EM structures of the mitochondrial calcium uniporter. Nature 559:575-579 |
Satpathy, Ansuman T; Saligrama, Naresha; Buenrostro, Jason D et al. (2018) Transcript-indexed ATAC-seq for precision immune profiling. Nat Med 24:580-590 |
Showing the most recent 10 out of 152 publications