This Predoctoral Training Program is designed to provide a broad education in the Pharmacological Sciences leading to the Ph.D. degree. The Pharmacological Sciences Training Program (PSTP) is based primarily in the Department of Pharmacology and Chemical Biology at the University Of Pittsburgh School Of Medicine, but includes faculty from three schools within the University and ten departments including Anesthesiology, Chemistry, Immunology, Medicine, Microbiology and Molecular Genetics, Neurobiology, Neurology, Otolaryngology, Pharmaceutical Sciences, and Structural Biology. Graduate students entering this program are typically first recruited into the Interdisciplinary Biomedical Sciences Graduate Program where they join a program that includes core didactic education in biomedical sciences, scientific ethics and statistics and research rotations. Students then transfer into the specialized Ph.D. program of their choice and become candidates for PSTP support in their second year. The training program provides graduate classes in the essential elements of modern pharmacology including neuropharmacology, cancer pharmacology, cardiovascular pharmacology, signal transduction and drug discovery and also the elements or quantitative pharmacokinetics, pharmacodynamics and drug metabolism. Students choose mentors from a well-funded faculty in one of six research areas: Cancer Pharmacology, Cell and Organ System Pharmacology, Drug Discovery, Neuropharmacology. Signal Transduction and Structural Pharmacology. Following completion of the comprehensive exam and a dissertation proposal, students are engaged full time in research in the third and subsequent years of this program. The PSTP also emphasizes training in the responsible conduct of research and provides training in skills (e.g. public presentations) that promote professional development. The PSTP thus provides a contemporary and exciting training opportunity for motivated students within a rich research environment and aims to generate Ph.D. graduates with a broad understanding of the discipline of pharmacology.

Public Health Relevance

Students that participate in this program will receive training in fundamental areas of pharmacology and physiology as well as participate in state of the art research that examines the mechanisms of action of many drugs that are either currently in use or being developed to treat a variety of human diseases. The knowledge gained by these trainees will directly impact human health as they seek to apply this knowledge as either basic researchers, clinicians, educators, business leaders or public policy advocates towards the development of safe and effective drugs.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008424-17
Application #
8100490
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Okita, Richard T
Project Start
1994-07-01
Project End
2015-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
17
Fiscal Year
2011
Total Cost
$176,752
Indirect Cost
Name
University of Pittsburgh
Department
Pharmacology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Ye, Jing; Das, Sabyasachi; Roy, Adhiraj et al. (2018) Ischemic Injury-Induced CaMKII? and CaMKII? Confer Neuroprotection Through the NF-?B Signaling Pathway. Mol Neurobiol :
Weir, Mark C; Shu, Sherry T; Patel, Ravi K et al. (2018) Selective Inhibition of the Myeloid Src-Family Kinase Fgr Potently Suppresses AML Cell Growth in Vitro and in Vivo. ACS Chem Biol 13:1551-1559
Chen, Jingci; Nagle, Alison M; Wang, Yu-Fen et al. (2018) Controlled dimerization of insulin-like growth factor-1 and insulin receptors reveals shared and distinct activities of holo and hybrid receptors. J Biol Chem 293:3700-3709
Zhang, Xuefeng; Cao, Shufen; Barila, Guillermo et al. (2018) Correction: Cyclase-associated protein 1 (CAP1) is a prenyl-binding partner of Rap1 GTPase. J Biol Chem 293:13849
Lorenz-Guertin, Joshua M; Bambino, Matthew J; Jacob, Tija C (2018) ?2 GABAAR Trafficking and the Consequences of Human Genetic Variation. Front Cell Neurosci 12:265
Nagle, Alison M; Levine, Kevin M; Tasdemir, Nilgun et al. (2018) Loss of E-cadherin Enhances IGF1-IGF1R Pathway Activation and Sensitizes Breast Cancers to Anti-IGF1R/InsR Inhibitors. Clin Cancer Res 24:5165-5177
Hartmaier, R J; Trabucco, S E; Priedigkeit, N et al. (2018) Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer. Ann Oncol 29:872-880
Brady, Megan L; Pilli, Jyotsna; Lorenz-Guertin, Joshua M et al. (2018) Depolarizing, inhibitory GABA type A receptor activity regulates GABAergic synapse plasticity via ERK and BDNF signaling. Neuropharmacology 128:324-339
Basudan, Ahmed; Priedigkeit, Nolan; Hartmaier, Ryan J et al. (2018) Frequent ESR1 and CDK Pathway Copy-Number Alterations in Metastatic Breast Cancer. Mol Cancer Res :
Meijles, Daniel N; Sahoo, Sanghamitra; Al Ghouleh, Imad et al. (2017) The matricellular protein TSP1 promotes human and mouse endothelial cell senescence through CD47 and Nox1. Sci Signal 10:

Showing the most recent 10 out of 63 publications