Most human diseases, production traits of agriculturally important species, and fitness-related characters in natural populations, are controlled by multiple interacting genes with small, and environmentally sensitive effects. Determining what loci contribute to variation in complex traits, how they interact with each other and the environment, and what molecular polymorphisms cause the variation in phenotypes, are of fundamental importance for quantitative traits requires expertise with concepts and methodology in the traditionally separate disciplines of molecular, developmental, quantitative and population genetics, statistics and molecular evolutionary theory. The goal of this program is to provide this interdisciplinary training. The 12 training faculty have combined expertise in all of these disciplines, have active research programs focusing on experimental and statistical genetics, and interact extensively. Support is requested for seven predoctoral trainees for five years. The training program will follow the Ph.D. program in the Department of Genetics. Trainees will be selected and their progress monitored annually by the Executive Committee. Interdisciplinary training will be stressed, with advanced courses in at least three of the major disciplines required. Trainees will select their major advisor(s) and advisory committee after three laboratory rotations among the training faculty in their first semester. Collaborative research projects will be encouraged. Trainees will receive formal training in oral scientific presentation, and will participate in an annual mini-symposium on a topic related to the training program.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008443-07
Application #
6150894
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Rhoades, Marcus M
Project Start
1992-07-01
Project End
2004-06-30
Budget Start
2000-07-01
Budget End
2001-06-30
Support Year
7
Fiscal Year
2000
Total Cost
$109,715
Indirect Cost
Name
North Carolina State University Raleigh
Department
Genetics
Type
Schools of Earth Sciences/Natur
DUNS #
City
Raleigh
State
NC
Country
United States
Zip Code
27695
Kocher, S D; Tarpy, D R; Grozinger, C M (2010) The effects of mating and instrumental insemination on queen honey bee flight behaviour and gene expression. Insect Mol Biol 19:153-62
Large, Edward E; Mathies, Laura D (2010) hunchback and Ikaros-like zinc finger genes control reproductive system development in Caenorhabditis elegans. Dev Biol 339:51-64
Funk-Keenan, Jhondra; Haire, Frances; Woolard, Sara et al. (2008) Hepatic endopolyploidy as a cellular consequence of age-specific selection for rate of development in mice. J Exp Zool B Mol Dev Evol 310:385-97
Jordan, Katherine W; Carbone, Mary Anna; Yamamoto, Akihiko et al. (2007) Quantitative genomics of locomotor behavior in Drosophila melanogaster. Genome Biol 8:R172
Jordan, Katherine W; Morgan, Theodore J; Mackay, Trudy F C (2006) Quantitative trait loci for locomotor behavior in Drosophila melanogaster. Genetics 174:271-84
Shoemaker, J S; Painter, I S; Weir, B S (1999) Bayesian statistics in genetics: a guide for the uninitiated. Trends Genet 15:354-8
Shoemaker, J; Painter, I; Weir, B S (1998) A Bayesian characterization of Hardy-Weinberg disequilibrium. Genetics 149:2079-88
Martin, E R; Kaplan, N L; Weir, B S (1997) Tests for linkage and association in nuclear families. Am J Hum Genet 61:439-48
Kaplan, N L; Martin, E R; Weir, B S (1997) Power studies for the transmission/disequilibrium tests with multiple alleles. Am J Hum Genet 60:691-702
Pederson, J D; Kiehart, D P; Mahaffey, J W (1996) The role of HOM-C genes in segmental transformations: reexamination of the Drosophila Sex combs reduced embryonic phenotype. Dev Biol 180:131-42