The Chemistry Biology Interface Training Program (CBIT) provides graduate students at the University of Wisconsin-Madison with a training experience designed to allow them to apply interdisciplinary approaches and ideas to make major breakthroughs. This project has two inter-related objectives. The first is to train graduate students to address synthetic and mechanistic problems that transcend the traditional boundaries of chemistry and biology. In this way, trainees will be prepared for careers in which they illuminate key issues in human health through innovative approaches. The second is to provide career advice and assistance so that trainees can use their training and skills to maximize their impact. These objectives are achieved through the unique training plan offered graduate student trainees. This renewal requests support for twelve predoctoral trainees per year;each trainee will be appointed to the program for up to three years. CBIT trainees enroll in three courses including a didactic course in the field of chemical biology that introduces graduate students to research and concepts at the intersection of chemistry and biology, an advanced literature seminar course in chemical biology where students present and discuss recent key publications in the field, and a research seminar in which trainees present their personal research results. Through this program, CBIT trainees receive experience in analysis of the literature, grant writing, and peer review. They also develop their oral communication skills through giving different types of presentations and receiving extensive feedback on how to enhance the effectiveness of their presentations. Another key element of the CBIT is career advising and development for all trainees, which occurs through the creation of individual development plans and participation in a newly implemented Midwest Chemistry Biology Interface Career Development Conference. Finally, CBIT trainees benefit from the opportunity to participate in a 10-12-week internship. The goal of this feature is to immerse them in an environment that provides direct experience in a relevant setting distinct from a research university.
The Chemistry Biology Interface Training Program (CBIT) provides graduate students at the University of Wisconsin-Madison with a training experience designed to allow them to use interdisciplinary ideas and approaches to make major biomedical breakthroughs. The program trains graduate students to address problems that transcend the traditional boundaries of chemistry and biology and also provides trainees with career plan development assistance. Training at the chemistry---biology interface is ideal preparation for designing, discovering, and developing the next generation of therapeutic agents, which will directly impact human health.
Liu, Zhen; Ehlerding, Emily B; Cai, Weibo et al. (2018) One-step synthesis of an 18F-labeled boron-derived methionine analog: a substitute for 11C-methionine? Eur J Nucl Med Mol Imaging 45:582-584 |
Hodges, Heather L; Brown, Robert A; Crooks, John A et al. (2018) Imaging mycobacterial growth and division with a fluorogenic probe. Proc Natl Acad Sci U S A 115:5271-5276 |
Ehlerding, Emily B; Lan, Xiaoli; Cai, Weibo (2018) Predicting PD-1/PD-L1 status in bladder cancer with 18F-FDG PET? Eur J Nucl Med Mol Imaging : |
Wei, Weijun; Ehlerding, Emily B; Lan, Xiaoli et al. (2018) PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 45:132-150 |
Wei, Weijun; Jiang, Dawei; Ehlerding, Emily B et al. (2018) Noninvasive PET Imaging of T cells. Trends Cancer 4:359-373 |
Ehlerding, Emily B; Lan, Xiaoli; Cai, Weibo (2018) ""Albumin Hitchhiking"" with an Evans Blue Analog for Cancer Theranostics. Theranostics 8:812-814 |
Kang, Lei; Jiang, Dawei; Ehlerding, Emily B et al. (2018) Noninvasive Trafficking of Brentuximab Vedotin and PET Imaging of CD30 in Lung Cancer Murine Models. Mol Pharm 15:1627-1634 |
Ehlerding, Emily B; Lacognata, Saige; Jiang, Dawei et al. (2018) Targeting angiogenesis for radioimmunotherapy with a 177Lu-labeled antibody. Eur J Nucl Med Mol Imaging 45:123-131 |
Zhan, Yonghua; Ehlerding, Emily B; Shi, Sixiang et al. (2018) Intrinsically Zirconium-89-Labeled Manganese Oxide Nanoparticles for In Vivo Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging. J Biomed Nanotechnol 14:900-909 |
Ehlerding, Emily B; Grodzinski, Piotr; Cai, Weibo et al. (2018) Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano 12:2106-2121 |
Showing the most recent 10 out of 258 publications